Transmitter release during normal and altered growth of identified muscle fibres in the crayfish. 1983

G A Lnenicka, and D Mellon

During growth of identified crayfish muscle fibres from a diameter of 20 to 400 micron, the excitatory junctional potential (e.j.p.) amplitude was found to be independent of diameter. Thus, e.j.p. amplitude was maintained during growth in spite of a 21-fold decrease in miniature excitatory junctional potential (m.e.j.p.) amplitude previously reported (Lnenicka & Mellon, 1983). The maintenance of e.j.p. amplitude was found to be partially due to a 5-fold increase in quantal release at 'active sites' during growth. In order to determine whether the increase in transmitter release can be regulated by the rate of muscle fibre growth, the rate of growth was experimentally reduced. By decreasing the resting length of the muscle during growth, the rate of increase in the diameter was reduced by approximately 50% compared with the contralateral control muscle fibres. The input resistance and the m.e.j.p. were appropriately larger in the smaller-diameter experimental fibres. However, e.j.p. amplitude in the experimental fibres was not significantly different from that in the contralateral control fibres. This was apparently due to the significantly smaller quantal release at active sites on the experimental fibres compared with control fibres. Thus, experimental alteration of the rate of muscle fibre growth results in regulation of transmitter release, suggesting that the muscle fibre may control the increase in transmitter release seen during normal growth.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

G A Lnenicka, and D Mellon
February 1989, Cell and tissue research,
G A Lnenicka, and D Mellon
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
G A Lnenicka, and D Mellon
July 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G A Lnenicka, and D Mellon
August 1982, Brain research,
G A Lnenicka, and D Mellon
February 2006, The Journal of physiology,
Copied contents to your clipboard!