L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. 1984

H J Olverman, and A W Jones, and J C Watkins

Electrophysiological studies indicate the existence of several types of receptors for excitatory amino acids. Thus, responses induced by N-methyl-D-aspartate (NMDA) are potently and selectively blocked by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), while responses induced by such agonists as kainate and quisqualate are relatively resistant to this antagonist. Evidence is mounting that excitatory amino acid receptors are involved in synaptic excitation in many regions of the central nervous system (see refs 1 and 4 for reviews). Although the identity of the transmitter(s) acting at these receptors remains uncertain, L-aspartate has been considered the most likely transmitter at NMDA receptors and L-glutamate at kainate/quisqualate receptors. Other endogenous acidic amino acids proposed as possible transmitters include a range of sulphur-containing amino acids and the tryptophan metabolite, quinolinic acid. Ligand-binding studies offer a means not only of assessing receptor densities in different brain regions but also of comparing affinities of transmitter candidates for these receptors. However, to avoid difficulties of interpretation arising from the use of ligands which bind to more than one type of receptor, such as [3H]-L-glutamate and [3H]-L-aspartate (for example, refs 8-12), ligands with high receptor selectivity are required. Here, we report that [3H]-D-AP5 binds specifically to rat brain membranes, that the hippocampus and cerebral cortex are enriched in these sites relative to other brain areas and that L-glutamate has higher affinity for these receptors than have all other transmitter candidates tested.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

H J Olverman, and A W Jones, and J C Watkins
December 1978, Journal of neurochemistry,
H J Olverman, and A W Jones, and J C Watkins
February 1980, Brain research,
H J Olverman, and A W Jones, and J C Watkins
April 1985, Neuroscience letters,
H J Olverman, and A W Jones, and J C Watkins
April 1984, European journal of pharmacology,
H J Olverman, and A W Jones, and J C Watkins
November 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H J Olverman, and A W Jones, and J C Watkins
October 1983, British journal of pharmacology,
H J Olverman, and A W Jones, and J C Watkins
October 1984, Journal of neurochemistry,
H J Olverman, and A W Jones, and J C Watkins
January 1981, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!