Analysis of the responses of rainbow lizard (Agama agama Linn.). Isolated portal vein to electrical stimulation and to drugs. 1983

J A Ojewole

The responses of the rainbow lizard (Agama agama Linn.) isolated portal vein to transmural electrical stimulation and to drugs have been examined. The isolated venous muscle preparation strongly contracted in response to exogenously administered adrenaline and noradrenaline (10(-8)-2.5 x 10(-6) M) and also weakly contracted to acetylcholine and 5-hydroxytryptamine (10(-7) - 10(-5) M). The vein relaxed in response to exogenous administrations of isoprenaline (10(-8) - 2.5 x 10(-6) M) and adenosine triphosphate (ATP, 10(-7) - 10(-5) M). Transmural electrical stimulation of the isolated vein at 1-40 Hz induced frequency-dependent contractions of the venous smooth muscle which were inhibited or abolished by tetrodotoxin, alpha-adrenoceptor blockers, adrenergic neurone blocking agents, local anaesthetics, and by pretreatment of rainbow lizards with reserpine. Analysis of these findings shows that the electrical stimulation-evoked contractions of the venous blood vessel resulted from the excitation of post-ganglionic sympathetic neurones. A comparison of the relative potentiation of the venous preparation contractions induced by electrical stimulation, adrenaline and noradrenaline suggested that noradrenaline is the sympathetic transmitter mediating the contractile effects due to electrical excitation. The advantages of this preparation for studying sympathetic nerve-smooth muscle mechanisms and as a pharmacological model for investigating venous blood vessel activity are discussed.

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

J A Ojewole
January 1989, Canadian journal of physiology and pharmacology,
J A Ojewole
June 1976, West African journal of pharmacology and drug research,
J A Ojewole
January 1980, Comparative biochemistry and physiology. C: Comparative pharmacology,
J A Ojewole
November 1983, Methods and findings in experimental and clinical pharmacology,
Copied contents to your clipboard!