Interactions of pinealectomy and short-photoperiod exposure on the neuroendocrine axis of the male Syrian hamster. 1984

R W Steger, and R J Reiter, and T M Siler-Khodr

The effect of pineal gland removal on neuroendocrine function of male Syrian hamsters housed under long (14 h light:10 h dark) or short (5 h light 19 h dark) photoperiod conditions was tested. In sham-operated, but not in pinealectomized, animals, exposure to the short photoperiod resulted in a significant reduction in testicular weight. Median eminence (ME), medial basal hypothalamus (MBH), and medial preoptic-suprachiasmatic (MPOA-SCN) norepinephrine (NE) turnover was significantly reduced in 5 L:19 D sham-operated animals as compared to 14 L:10 D sham-operated or 14 L:10 D pinealectomized controls. The effects of short photoperiod on ME and MPOA-SCN NE turnover were reversed by pinealectomy, but reductions in MBH NE turnover were not dependent on the presence of the pineal gland. Pineal-dependent decreases in MBH and increases in MPOA-SCN dopamine turnover were also observed after transfer of hamsters from long to short photoperiods. Both ME and MBH luteinizing hormone-releasing hormone (LHRH) levels were increased after short-photoperiod exposure, but pineal removal prevented these increases of LHRH levels only in the MBH of the 5 L:19 D hamsters. Levels of serotonin or its metabolite, 5-hydroxyindole-acetic acid, were not affected by pinealectomy and/or short-photoperiod exposure. We conclude that short-photoperiod-induced gonadal atrophy in the Syrian hamster is associated with pineal-dependent and pineal-independent changes in hypothalamic neurotransmitter turnover and hypothalamic LHRH content.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

R W Steger, and R J Reiter, and T M Siler-Khodr
January 1986, Neuroendocrinology,
R W Steger, and R J Reiter, and T M Siler-Khodr
February 1990, Physiology & behavior,
R W Steger, and R J Reiter, and T M Siler-Khodr
February 1985, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R W Steger, and R J Reiter, and T M Siler-Khodr
January 1994, Journal of biological rhythms,
R W Steger, and R J Reiter, and T M Siler-Khodr
January 1986, Journal of pineal research,
R W Steger, and R J Reiter, and T M Siler-Khodr
January 1985, Growth,
Copied contents to your clipboard!