Increase in mitochondrial content of long-chain acyl-CoA in brown adipose tissue during cold-acclimation. 1984

P T Normann, and T Flatmark

The mitochondrial content of long-chain acyl-CoA esters in the brown adipose tissue of guinea pigs increased 3.5-fold from a level of 92 +/- 17 pmol per mg protein (+/- S.E.; n = 7) in the control animals adapted at 22 degrees C to a new steady-state level of 328 +/- 20 pmol per mg protein (+/- S.E.; n = 46) after 10 days of cold-acclimation (5 degrees C). These low values of long-chain acyl-CoA species and the slow adaptive response for their increase do not support the proposal (Cannon, B., Sindin, U. and Romert, L. (1977) FEBS Lett. 4, 43-46) that the fatty acid CoA-esters have a physiological function in the regulation of the H+ (or OH-) permeability of the mitochondrial inner membrane. Experimental evidence is presented supporting the proposal that the long-chain acyl-CoA species are largely confined to the cytosolic side of the inner membrane. The activity of the adenine nucleotide translocase, as estimated at 25 degrees C in the reverse direction, was found to increase 5-fold upon depletion of the mitochondria of fatty acids (free and esterified) by preincubation with bovine serum albumin. The presence of potent inhibitors, i.e., long-chain acyl-CoA species, of adenine nucleotide translocation in brown adipose tissue of thermogenically active animals further supports the conclusion that ATP hydrolyzing mechanisms contribute insignificantly to long-term thermogenesis. The low values of long-chain acyl-CoA hydrolase (EC 3.1.2.1) activity, as measured in intact mitochondria and on a mitochondrial matrix fraction (i.e., 1.6 nmol X min-1 per mg protein), do not support the proposal that the hydrolase activity plays a significant role in the loose-coupling of brown adipose tissue mitochondria, either by a futile cycle mechanism or promoted by free fatty acid-induced uncoupling.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010170 Palmitoyl-CoA Hydrolase Enzyme catalyzing reversibly the hydrolysis of palmitoyl-CoA or other long-chain acyl coenzyme A compounds to yield CoA and palmitate or other acyl esters. The enzyme is involved in the esterification of fatty acids to form triglycerides. EC 3.1.2.2. Acyl CoA Hydrolase,Fatty Acyl Thioesterase,Palmitoyl CoA Deacylase,Palmitoyl Coenzyme A Hydrolase,Palmitoyl Thioesterase,Long-Chain Fatty-Acyl-CoA Hydrolase,Oleoyl-CoA Acylhydrolase,Stearoyl CoA Hydrolase,Thioesterase I,Acylhydrolase, Oleoyl-CoA,CoA Deacylase, Palmitoyl,CoA Hydrolase, Acyl,CoA Hydrolase, Stearoyl,Deacylase, Palmitoyl CoA,Fatty-Acyl-CoA Hydrolase, Long-Chain,Hydrolase, Acyl CoA,Hydrolase, Long-Chain Fatty-Acyl-CoA,Hydrolase, Palmitoyl-CoA,Hydrolase, Stearoyl CoA,Long Chain Fatty Acyl CoA Hydrolase,Oleoyl CoA Acylhydrolase,Palmitoyl CoA Hydrolase,Thioesterase, Fatty Acyl,Thioesterase, Palmitoyl
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P T Normann, and T Flatmark
July 1975, Biochimica et biophysica acta,
P T Normann, and T Flatmark
September 2010, Biochemical and biophysical research communications,
P T Normann, and T Flatmark
June 2021, Comparative biochemistry and physiology. Part D, Genomics & proteomics,
P T Normann, and T Flatmark
February 1981, The Biochemical journal,
P T Normann, and T Flatmark
December 1988, The American journal of physiology,
P T Normann, and T Flatmark
April 1980, Canadian journal of biochemistry,
P T Normann, and T Flatmark
September 1988, The Journal of biological chemistry,
Copied contents to your clipboard!