Multiple reactive metabolites derived from bromobenzene. 1984

S S Lau, and T J Monks, and J R Gillette

It has recently been shown that bromobenzene is converted to multiple reactive metabolites. However, the nature of these reactive metabolites is unclear. In the present manuscript, we have demonstrated that the same cytochromes P-450 activate both bromobenzene and p-bromophenol, and each substrate competitively inhibits the metabolism of the other. Moreover, the covalent binding of p-bromophenol to rat liver microsomes was inhibited by epoxide hydrolase, catechol-O-methyltransferase, superoxide dismutase, glutathione, and ascorbic acid but not by catalase. In contrast, the amount of 4- bromocatechol isolated from microsomal incubations containing p-bromophenol was decreased by glutathione and increased by ascorbic acid and superoxide dismutase. It is thus likely that p-bromophenol is converted to an epoxide that decomposes to 4- bromocatechol and that both the epoxide and the quinone formed from oxidation of 4- bromocatechol may become covalently bound to tissue proteins. However, these chemically reactive metabolites are apparently nontoxic because treatments which increase the covalent binding of p-bromophenol in vitro do not cause toxicity in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001969 Bromobenzenes Derivatives of benzene in which one or more hydrogen atoms on the benzene ring are replaced by bromine atoms.
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002394 Catechol O-Methyltransferase Enzyme that catalyzes the movement of a methyl group from S-adenosylmethionone to a catechol or a catecholamine. Catechol Methyltransferase,Catechol-O-Methyltransferase,Catechol O Methyltransferase,Methyltransferase, Catechol,O-Methyltransferase, Catechol
D002396 Catechols A group of 1,2-benzenediols that contain the general formula R-C6H5O2. Pyrocatechols,o-Dihydroxybenzenes,ortho-Dihydroxybenzenes,o Dihydroxybenzenes,ortho Dihydroxybenzenes
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide

Related Publications

S S Lau, and T J Monks, and J R Gillette
January 1981, Advances in experimental medicine and biology,
S S Lau, and T J Monks, and J R Gillette
April 1991, Xenobiotica; the fate of foreign compounds in biological systems,
S S Lau, and T J Monks, and J R Gillette
December 2000, Chemical research in toxicology,
S S Lau, and T J Monks, and J R Gillette
January 1992, Chemical research in toxicology,
S S Lau, and T J Monks, and J R Gillette
January 2021, Current drug metabolism,
S S Lau, and T J Monks, and J R Gillette
January 2016, Chemico-biological interactions,
S S Lau, and T J Monks, and J R Gillette
May 2002, Chemical research in toxicology,
S S Lau, and T J Monks, and J R Gillette
May 1988, Xenobiotica; the fate of foreign compounds in biological systems,
S S Lau, and T J Monks, and J R Gillette
November 2019, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!