Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients. 1984

A Berteloot

In the presence of a Na+-gradient (out greater than in), L-glutamic acid and L-and D-aspartic acids were equally well concentrated inside the vesicles, while no transport above simple diffusion levels was seen by replacement of Na+ by K+. Equilibrium uptake values were found inversely proportional to the medium osmolarity, thus demonstrating uptake into an osmotically sensitive intravesicular space. The extrapolation of these lines to infinite medium osmolarity (zero space) showed only a small binding component in acidic amino-acid transport. When the same experiment was performed at saturating substrate concentrations, linear relationships extrapolating through the origin but showing smaller slope values were recorded, thus indicating that the binding component could be more important than suspected above. However, binding to the membrane was neglected in our studies as it was absent from initial rate measurements. Na+-dependent uphill transport of L-glutamic acid was stimulated by K+ present on the intravesicular side only but maximal stimulation was recorded under conditions of an outward K+-gradient (in greater than out). Quantitative and qualitative differences in the K+ effect were noted between pH 6.0 and 8.0. Initial uptake rates showed pH dependency in Na+-(out greater than in) + K+-(in greater than out) gradient conditions only with a physiological pH optimum between 7.0 and 7.5. It was also found that a pH-gradient (acidic outside) could stimulate both the Na+-gradient and the Na+ + K+-gradient-dependent transport of L-glutamic acid. However, pH- or K+-gradient alone were ineffective in stimulating uptake above simple diffusion level. Finally, it was found that increased rates of efflux were always observed with an acidic pH outside, whatever the conditions inside the vesicles. From these results, we propose a channel-type mechanism of L-glutamic acid transport in which Na+ and K+ effects are modulated by the surrounding pH. The model proposes a carrier with high or low affinity for Na+ in the protonated or unprotonated forms, respectively. We also propose that K+ binding occurs only to the unprotonated carrier and allows its fast recycling as compared to the free form of the carrier. Such a model would be maximally active and effective in the intestine in the in vivo physiological situations.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008297 Male Males
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006878 Hydroxides Inorganic compounds that contain the OH- group.

Related Publications

A Berteloot
March 1994, Biochemical pharmacology,
A Berteloot
August 1988, The American journal of physiology,
A Berteloot
July 1988, The American journal of physiology,
A Berteloot
October 1988, The American journal of physiology,
A Berteloot
March 1981, The American journal of physiology,
A Berteloot
May 1997, The Journal of pharmacy and pharmacology,
A Berteloot
March 2003, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
Copied contents to your clipboard!