The interaction of skeletal myosin subfragment 1 with the polyanion, heparin. 1984

J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann

The association between chymotryptic skeletal muscle myosin subfragment 1 (S1) and the polyanion, heparin, was investigated as an experimental approach in probing the functional importance of the cationic sites on S1 and their involvement in ionic interactions within the myosin head during energy transduction. The direct binding of heparin, used at micromolar concentrations, and its influence on the structural and functional properties of S1 were followed by gel chromatography, electron microscopy, chemical cross-linking techniques and limited digestion studies. 1. The limited tryptic digestion of S1 showed that the presence of heparin, as well as of the homopolymer, poly-(L-glutamic acid) causes a specific structural change in the 50-kDa heavy chain region of S1 and accelerates the breakdown of this segment into a 45-kDa species by a proteolytic cleavage restricted to its COOH-terminal portion. Under similar experimental conditions, the binding of MgATP and MgADP to S1 led also to the 50-kDa----45-kDa conversion, suggesting that the S1-nucleotide interactions exhibit some resemblances to the polyanion-S1 binding of polyanionic ligands to S1. This particular area is adjacent to the actin site containing the 45-kDa and 20-kDa segments of the S1 heavy chain. On the other hand, the polyanions as well as nucleotides induced changes in the interface between the heavy chain and the alkali light chains. 2. Moreover, the binding of heparin to S1 resulted in the self-association of the enzyme and the production of stable small S1 oligomers, most likely dimers, which were demonstrated by the alteration of the size of the S1 particles examined by electron microscopy and their freezing by chemical cross-linking agents. These findings are relevant to the recently reported property of skeletal chymotryptic S1 to form dimers under convenient ionic conditions, in particular in the presence of Mg-nucleotides. The interaction of cationic sites on S1 and possibly on the 50-kDa region of the heavy chain with polyanions promotes the dimerization of the S1 molecules. The binding of S1 to F-actin abolished S1 aggregation.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
May 1994, The Biochemical journal,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
September 1990, Biochemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
March 1997, Biophysical chemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
June 2002, Journal of biochemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
April 1977, The Biochemical journal,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
November 1981, Biochemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
March 2003, Biochemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
May 1972, Journal of molecular biology,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
December 1979, Journal of biochemistry,
J P Labbé, and R Bertrand, and E Audemard, and R Kassab, and D Walzthöny, and T Wallimann
July 1989, Biochemistry,
Copied contents to your clipboard!