Assessment of the functional role of brain adrenergic neurons: chronic effects of phenylethanolamine N-methyltransferase inhibitors and alpha adrenergic receptor antagonists on brain norepinephrine metabolism. 1984

J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard

The potential role of brain adrenergic neurons in regulating noradrenergic neuronal metabolism was assessed using inhibitors of phenylethanolamine N-methyltransferase (PNMT), the enzyme responsible for epinephrine production. Two centrally active PNMT inhibitors (SK&F 64139 and LY134046) were administered over a 6-day treatment period to cause prolonged reductions in epinephrine formation. In brain regions containing endogenous epinephrine (medulla-pons and hypothalamus), chronic treatment with PNMT inhibitors produced: 1) reductions of epinephrine content, 2) elevation of tyrosine hydroxylase activity and 3) elevation of alpha-1 and particularly alpha-2 adrenergic receptor radioligand binding sites; neither norepinephrine turnover nor beta adrenergic receptor binding was affected. In brain regions devoid of endogenous epinephrine (cerebellum, frontal cortex and hippocampus), chronic treatment with PNMT inhibitors produced 1) a variable increase in tyrosine hydroxylase activity (cerebellum only) and 2) a reduction in norepinephrine turnover; neither alpha or beta adrenergic receptor binding was altered. A PNMT inhibitor failing to cross the blood-brain barrier, SK&F 29661, and an alpha-1 adrenoceptor antagonist, prazosin, had no effect on brain catecholamine metabolism. High doses of an alpha-2 adrenoceptor antagonist, yohimbine, increased medulla-pons tyrosine hydroxylase activity but also resulted in prominent reductions in norepinephrine content in all brain regions. The results suggest that prolonged reductions in endogenous brain epinephrine formation produce unique effects on brain norepinephrine function; these effects are regionally distinctive and are qualitatively different from the effects seen with chronic alpha-1 or alpha-2 adrenergic receptor blockade. These data are consistent with regulation of brainstem norepinephrine-containing cell bodies by endogenous adrenergic systems, probably via medullary-pontine alpha-2 adrenergic receptors.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.

Related Publications

J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
December 1981, Research communications in chemical pathology and pharmacology,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
September 1985, Research communications in chemical pathology and pharmacology,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
September 1982, Research communications in chemical pathology and pharmacology,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
December 2016, Neuroscience letters,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
January 1996, Endocrine pathology,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
April 1987, Neuroscience letters,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
March 1977, Clinica chimica acta; international journal of clinical chemistry,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
June 1992, Brain research,
J M Stolk, and G Vantini, and B D Perry, and R B Guchhait, and D C U'Prichard
December 1984, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!