Significance of glutathione S-conjugate for glutathione metabolism in human erythrocytes. 1984

T Kondo, and N Taniguchi, and Y Kawakami

The significance of glutathione S-conjugate in the regulation of glutathione synthesis was studied using human erythrocyte gamma-glutamylcysteine synthetase. Feedback inhibition of the enzyme by reduced glutathione was released by the addition of the glutathione S-conjugate (S-2,4-dinitrophenyl glutathione). A half-maximal effect of glutathione S-conjugate on gamma-glutamylcysteine synthetase activity was obtained at approximately 1 microM; 50 microM glutathione S-conjugate in the presence of 10 mM glutathione actually increased the enzyme activity twofold above uninhibited levels. Glutathione S-conjugate had no effect on the enzyme activity in the absence of glutathione. When erythrocytes were exposed to the electrophile 1-chloro-2,4-dinitrobenzene, which forms a glutathione S-conjugate by the catalytic reaction of glutathione S-transferase, the level of glutathione synthesis increased. These data suggest that glutathione S-conjugate plays a role in stimulating the synthesis of glutathione.

UI MeSH Term Description Entries
D010453 Peptide Synthases Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups. Peptide Synthetases,Acid-Amino-Acid Ligases,Acid Amino Acid Ligases,Ligases, Acid-Amino-Acid,Synthases, Peptide,Synthetases, Peptide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005721 Glutamate-Cysteine Ligase One of the enzymes active in the gamma-glutamyl cycle. It catalyzes the synthesis of gamma-glutamylcysteine from glutamate and cysteine in the presence of ATP with the formation of ADP and orthophosphate. EC 6.3.2.2. gamma-Glutamyl-Cysteine Synthetase,Glutamylcysteine Synthetase,Glutamate Cysteine Ligase,Ligase, Glutamate-Cysteine,Synthetase, Glutamylcysteine,Synthetase, gamma-Glutamyl-Cysteine,gamma Glutamyl Cysteine Synthetase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

T Kondo, and N Taniguchi, and Y Kawakami
February 1981, FEBS letters,
T Kondo, and N Taniguchi, and Y Kawakami
August 2002, Biochimica et biophysica acta,
T Kondo, and N Taniguchi, and Y Kawakami
September 2003, European journal of biochemistry,
T Kondo, and N Taniguchi, and Y Kawakami
September 1984, British journal of haematology,
T Kondo, and N Taniguchi, and Y Kawakami
September 1995, Biochimica et biophysica acta,
T Kondo, and N Taniguchi, and Y Kawakami
January 1980, American journal of human genetics,
T Kondo, and N Taniguchi, and Y Kawakami
November 1990, The Journal of laboratory and clinical medicine,
T Kondo, and N Taniguchi, and Y Kawakami
November 1994, Biochimica et biophysica acta,
Copied contents to your clipboard!