Glucuronide conjugation reduces the cytotoxicity but not the mutagenicity of benzo(a)pyrene in the CHO/HGPRT assay. 1984

L Recio, and A W Hsie

Benzo(a)pyrene (B[a]P) is biotransformed by the mixed-function oxidase (MFO) system to numerous metabolites some of which are cytotoxic and/or mutagenic to mammalian cells. However, conjugation of B(a)P metabolites with glucuronic acid in vivo is a major pathway of detoxication and elimination. The effects of glucuronide conjugation on B(a)P-induced cytotoxicity and mutagenicity were studied using the CHO/HGPRT assay with a rat liver homogenate preparation containing MFO system cofactors (S9 mix) and uridine diphosphate alpha-D-glucuronic acid (UDPGA). B(a)P metabolites proximate to the biologically active B(a)P quinones (B[a]P 6-OH) and to the B(a)P 7,8-diol-9,10 epoxide isomers (B[a]P 7,8-diol), were also assayed with S9 mix in the absence and presence of UDPGA. The addition of UDPGA to S9 mix reduced B(a)P-induced cytotoxicity but did not affect mutagenicity. B(a)P 6-OH-mediated cytotoxicity was also reduced in the presence of UDPGA. UDPGA had no effect on B(a)P 7,8-diol-induced cytotoxicity or mutagenicity. B(a)P phenols have been shown to be the preferred B(a)P-metabolite substrates for UDP-glucuronyltransferase enzymes. Thus, the reduction of B(a)P and B(a)P 6-OH-induced cytotoxicity by glucuronide conjugation is likely due to the elimination of cytotoxic phenols and quinones. Since B(a)P 7,8-diol is a poor substrate for UDP-glucuronyltransferase enzymes, no effects on B(a)P-induced mutagenicity or B(a)P 7,8-diol-induced cytotoxicity and mutagenicity were observed.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005260 Female Females
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

L Recio, and A W Hsie
January 1984, Environmental mutagenesis,
L Recio, and A W Hsie
October 1981, Mutation research,
L Recio, and A W Hsie
September 1976, Cancer research,
L Recio, and A W Hsie
March 1983, Journal of toxicology and environmental health,
L Recio, and A W Hsie
October 1981, Food and cosmetics toxicology,
Copied contents to your clipboard!