Discrete regional distribution of biochemical markers for the dopamine, noradrenaline, serotonin, GABA and acetylcholine systems in the monkey brain (Cebus Apella). Effects of stress. 1984

J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne

Brains from Cebus Apella monkeys have been mapped biochemically using a cryo-section technique which enables exact micro-dissectioning of tissue. Two neurotransmitters; noradrenaline (NA) and gamma-amino-butyric acid (GABA) were measured by gas chromatography-masspectrometry technique. In addition biochemical markers reflecting metabolic activity in the dopamine (homovanillic acid, HVA, 3, 4-dihydroxyphenylacetic acid, DOPAC), serotonin (5-hydroxyindoleacetic acid, 5-HIAA), noradrenaline (4-hydroxy-3-methoxy-phenylglycol, HMPG), acetylcholine (choline acetyltransferase, CAT) and GABA (glutamic acid decarboxylase, GAD) transmitter systems were assayed. The distribution of these transmitter markers roughly corresponded to earlier studies in other non-human primates, whereas similar studies on the human brain generally show lower concentrations and enzyme activities. One monkey exposed to severe stress immediately before death deviated from the normal animals with regard to HVA, 5-HIAA, GAD and GABA. For the study of neuroleptic drugs, and notably their neurological side-effects, Cebus Apella monkeys have turned out to be particularly useful. In our laboratory we have employed this species of monkey to develop a model for acute dystonia and tardive dyskinesia (Gunne and Barany 1976, 1979, Barany et al. 1979). As a first step in the topological mapping of brain neuro-chemistry in these animals we here present data from normal monkeys, not treated with neuroleptics. During the ongoing project there was an unplanned "stress experiment" in one monkey, which had a nightly fight with a cage partner and had to be sacrificed the morning after due to severe wounds. The present communication describes a method for obtaining well-defined samples from monkey brains and presents the data on homovanillic acid (HVA), 3.4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), noradrenaline (NA), 4-hydroxy-3-methoxy-phenyl glycol (HMPG), choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD), and gamma-amino-butyric acid (GABA) in discrete regions from 7 drug-naive control monkeys. Also data from the stressed animal are presented.

UI MeSH Term Description Entries
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002428 Cebus A genus of the family CEBIDAE, subfamily CEBINAE, consisting of gracile or untufted capuchin species. Tufted capuchins belong to genus SAPAJUS. Members include C. capucinus, C. nigrivultatus, and C. albifrons. Cebus inhabits the forests of Central and South Americas. Cebu,Gracile Capuchins,Monkey, Capuchin,Monkey, Ring-Tail,Monkey, Ringtail,Monkey, Ringtailed,Untufted Capuchins,White-Fronted Capuchin,Monkey, Ring-Tailed,Capuchin Monkey,Capuchin Monkeys,Capuchin, Gracile,Capuchin, Untufted,Capuchin, White-Fronted,Gracile Capuchin,Monkey, Ring Tail,Monkey, Ring Tailed,Ring-Tail Monkey,Ring-Tail Monkeys,Ring-Tailed Monkey,Ring-Tailed Monkeys,Ringtail Monkey,Ringtail Monkeys,Ringtailed Monkey,Ringtailed Monkeys,Untufted Capuchin,White Fronted Capuchin,White-Fronted Capuchins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
August 1998, Brain research,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
January 1978, Revista da Faculdade de Odontologia de Aracatuba,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
July 1980, European journal of pharmacology,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
October 1976, General pharmacology,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
January 1974, Folia primatologica; international journal of primatology,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
April 1992, Annals of the New York Academy of Sciences,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
September 1994, Anatomia, histologia, embryologia,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
May 1972, Journal of mammalogy,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
October 1969, Archives internationales de pharmacodynamie et de therapie,
J E Häggström, and B Sjöquist, and S A Eckernäs, and A Ingvast, and L M Gunne
February 1977, Acta pharmacologica et toxicologica,
Copied contents to your clipboard!