The effects of the Anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. 1984

G Isenberg, and U Ravens

The effects of Anemonia sulcata toxin (ATX II) on action potentials and membrane currents were studied in single myocytes isolated from guinea-pig or bovine ventricles. Addition of ATX II (2-20 nM) prolonged the action potential duration without a significant change in resting membrane potential. Concentrations of 40 nM-ATX II or more induced after-depolarizations and triggered automaticity. The effects were reversible after washing or upon addition of 60 microM-tetrodotoxin (TTX). 5 mM-Ni did not modify the effects. The single patch-electrode voltage-clamp technique of Hamill, Marty, Neher, Sakmann & Sigworth (1981) was applied to record membrane currents in response to 8.4 S long depolarizations starting from a holding potential of -90 mV. Currents flowing later than 5 ms after the depolarizing step were analysed. The fast events could not be considered because of insufficient voltage homogeneity. After 2 min of exposure to ATX II (20 nM) the changes in net membrane currents were measured. The difference between the currents in the presence of ATX II and during control was defined as the 'ATX-II-induced current' (iATX). After 4 min of wash iATX disappeared. Within 10 S of exposure to 60 microM-TTX, iATX was blocked completely. At potentials positive to -60 mV, iATX was inwardly directed and decayed slowly but incompletely during the 8.4 S long depolarizing pulse. The rate of decay was faster during clamp pulses to more positive potentials. A high amplitude noise was superimposed on the current trace; its amplitude decreased with more positive potentials. We analysed the voltage dependence of iATX with 'isochronous' current-voltage relations. The 0.1 S isochrone of iATX was characterized by a 'threshold' for negative currents at -60 mV, a branch with a negative slope (k = -7 mV, potential of half-maximal activation (V0.5) = -38 mV, bovine cells) leading to a maximum inward current at -20 mV, and an ascending branch which led to an apparent reversal potential (Erev) around +40 mV. The values measured in guinea-pig myocytes were similar though not identical (k = -5.5 mV, V0.5 = -30 mV, maximum of inward current at -5 mV, Erev = +50 mV). Erev shifted to less positive potentials in later isochrones. Holding the membrane at -45 mV prevented the induction of extra current by ATX II. When the holding potential was then changed to -85 mV, iATX developed within some 2 min. Returning the holding potential to -45 mV blocked iATX with a similar slow time course.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003063 Cnidaria A phylum of radially symmetrical invertebrates characterized by possession of stinging cells called nematocysts. It includes the classes ANTHOZOA; CUBOZOA; HYDROZOA, and SCYPHOZOA. Members carry CNIDARIAN VENOMS. Cnidarians,Cnidarian,Cnidarias
D003064 Cnidarian Venoms Venoms from jellyfish; CORALS; SEA ANEMONES; etc. They contain hemo-, cardio-, dermo- , and neuro-toxic substances and probably ENZYMES. They include palytoxin, sarcophine, and anthopleurine. Chironex Venoms,Jellyfish Venoms,Nematocyst Venoms,Sea Anemone Venoms,Chironex Venom,Cnidarian Venom,Jellyfish Venom,Portuguese Man-of-War Venom,Sea Anemone Venom,Portuguese Man of War Venom,Venom, Chironex,Venom, Cnidarian,Venom, Jellyfish,Venom, Portuguese Man-of-War,Venom, Sea Anemone,Venoms, Chironex,Venoms, Cnidarian,Venoms, Jellyfish,Venoms, Nematocyst,Venoms, Sea Anemone
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

G Isenberg, and U Ravens
November 1979, Die Naturwissenschaften,
G Isenberg, and U Ravens
September 1985, British journal of pharmacology,
G Isenberg, and U Ravens
September 1985, Archives internationales de physiologie et de biochimie,
G Isenberg, and U Ravens
January 1982, Journal of cardiovascular pharmacology,
G Isenberg, and U Ravens
May 1981, Analytical biochemistry,
G Isenberg, and U Ravens
December 1985, Pflugers Archiv : European journal of physiology,
G Isenberg, and U Ravens
April 1977, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Copied contents to your clipboard!