Electrical stimulation of the nucleus raphe magnus in the rat. Effects on 5-HT metabolism in the spinal cord. 1980

S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson

The direct electrical stimulation (with biphasic pulses of 1 msec, 10 pulses/sec, 200 microA, for 30 min) of the nucleus raphe magnus in chloral hydrate anaesthesized rats produced a significant acceleration (+50%) of 5-HT synthesis in the spinal cord as revealed by the increased rate of 5-HTP accumulation occurring at this level after the blockade of central 5-HTP decarboxylase with benserazid. In contrast, no change was detected in 5-HT metabolism in the forebrain of stimulated rats. The acceleration of 5-HT synthesis was likely not due to an increased availability of tryptophan for the rate-limiting enzyme, tryptophan hydroxylase, since the concentration of this amino acid was changed neither in the spinal cord, nor in the forebrain of stimulated rats. The measurement of tryptophan hydroxylase activity in soluble extracts from the spinal cord of control and stimulated rats revealed that the acceleration in 5-HT synthesis produced by the electrical stimulation of the nucleus raphe magnus was not associated with a persisting activation of this enzyme. Although one cannot completely exclude that a short-lasting activation of tryptophan hydroxylase, no longer detectable in soluble extracts, has occurred in the spinal cord of stimulated rats, the present findings rather suggest that the rate of 5-HT synthesis can be controlled by factors other than only the concentration of tryptophan and the intrinsic activity of tryptophan hydroxylase in serotoninergic neurons. The demonstration of an acceleration of 5-HT synthesis in bulbospinal serotoninergic neurons under stimulating conditions close to those producing analgesia in rats further supports the role of these neuronal systems in the physiological mechanisms of pain control.

UI MeSH Term Description Entries
D008297 Male Males
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002697 Chloral Hydrate A hypnotic and sedative used in the treatment of INSOMNIA. Noctec,Hydrate, Chloral
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D006916 5-Hydroxytryptophan The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. 5-HTP,Hydroxytryptophan,Oxitriptan,Oxytryptophan,Tryptophan, 5-Hydroxy-,5 Hydroxytryptophan,5-Hydroxy- Tryptophan,Tryptophan, 5 Hydroxy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
October 1990, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
March 1991, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
May 1977, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
October 2006, Neuroscience,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
December 2000, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
July 1995, Neuroscience,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
March 1986, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
July 1990, Brain research,
S Bourgoin, and J L Oliveras, and J Bruxelle, and M Hamon, and J M Besson
May 1978, Brain research,
Copied contents to your clipboard!