Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. 1980

W H Reeves, and Y S Kanwar, and M G Farquhar

Glomerular development was studied in the newborn rat kidney by electron microscopy and cytochemistry. Glomerular structure at different developmental stages was related to the permeability properties of its components and to the differentiation of anionic sites in the glomerular basement membrane (GBM) and on endothelial and epithelia cell surfaces. Cationic probes (cationized ferritin, ruthenium red, colloidal iron) were used to determine the time of appearance and distribution of anionic sites, and digestion with specific enzymes (neuraminidase, heparinase, chondroitinases, hyaluronidases) was used to determine their nature. Native (anionic) ferritin was used to investigate glomerular permeability. The main findings were: (a) The first endothelial fenestrae (which appear before the GBM is fully assembled) possess transient, negatively charged diaphragms that bind cationized ferritin and are impermeable to native ferritin. (b). Two types of glycosaminoglycan particles can be identified by staining with ruthenium red. Large (30-nm) granules are seen only in the cleft of the S-shaped body at the time of mesenchymal migration into the renal vesicle. They consist of hyaluronic acid and possibly also chondroitin sulfate. Smaller (10-15-nm) particles are seen in the earliest endothelial and epithelial basement membranes (S-shaped body stage), become concentrated in the laminae rarae after fusion of these two membranes to form the GBM, and contain heparan sulfate. They are assumed to be precursors of the heparan sulfate-rich granules present in the mature GBM. (c) Distinctive sialic acid-rich, and sialic acid-poor plasmalemmal domains have been delineated on both the epithelial and endothelial cell surfaces. (d) The appearance of sialoglycoproteins on the epithelial cell surface concides with the development of foot processes and filtration slits. (e) Initially the GBM is loosely organized and quite permeable to native ferritin ;it becomes increasinly impermeable to ferritin as the lamina densa becomes more compact. (f) The number of endothelial fenestrae and open epithelial slits increases as the GBM matures and becomes organized into an effective barrier to the passage of native ferritin.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

W H Reeves, and Y S Kanwar, and M G Farquhar
October 1989, Nihon Ika Daigaku zasshi,
W H Reeves, and Y S Kanwar, and M G Farquhar
January 1987, Kidney international,
W H Reeves, and Y S Kanwar, and M G Farquhar
January 1997, Nephron,
W H Reeves, and Y S Kanwar, and M G Farquhar
March 1988, The Anatomical record,
W H Reeves, and Y S Kanwar, and M G Farquhar
January 1986, Brain research,
W H Reeves, and Y S Kanwar, and M G Farquhar
August 1983, Journal of ultrastructure research,
W H Reeves, and Y S Kanwar, and M G Farquhar
January 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
W H Reeves, and Y S Kanwar, and M G Farquhar
June 1994, Hearing research,
W H Reeves, and Y S Kanwar, and M G Farquhar
August 1982, Kidney international. Supplement,
Copied contents to your clipboard!