Effects of ATP and protons on the Na : K selectivity of the (Na+ + K+)-ATPase studied by ligand effects on intrinsic and extrinsic fluorescence. 1980

J C Skou, and M Esmann

The effect of pH and of ATP on the Na : K selectivity of the (Na+ + K+)-ATPase has been tested under equilibrium conditions. The Na+ : K+-induced change in intrinsic tryptophan fluorescence and in fluorescence of eosin maleimide bound to the system has been used as a tool. 1 mol of eosin maleimide per mol of enzyme gives no loss in either ATPase or phosphatase activity and the fluorescence in the presence of Na+ is about 30% higher than in the presence of K+. Choline, protonated Tris, protonated histidine and Mg2+ have an 'Na+' effect on the extrinsic fluorescence, while Rb+, Cs+ and NH4+ have a 'K+' effect. Choline and protonated Tris have an Na+ effect on intrinsic fluorescence. A close correlation between the effect of Na+ compared to K+ on the fluorescence change and on Na+ activation of hydrolysis indicates that the observed changes in fluorescence are due to an effect of Na+ and of K+ on the internal sites of the system. The equilibrium between the two conformations, which are reflected by the difference in fluorescence with Na+ and K+, respectively, is highly influenced by the concentration of protons. At a given Na+ : K+ ratio, an increase in the proton concentration shifts the equilibrium towards the 'K+' fluorescence form while a decrease shifts the equilibrium towards the 'Na+' fluorescence form, i.e., protons increase the apparent affinity for K+ and vice versa, K+ increases pK values of importance for the Na+ : K+ selectivity. Conversely, a decrease in protons increases the apparent affinity for Na+ and vice versa, Na+ decreases the pK. ATP decreases the apparent pK for the protonation-deprotonation, i.e., ATP facilitates the deprotonation which accompanies Na+ binding. The results suggest two effects of ATP for the hydrolysis in the presence of Na+ and K+ : (i) at low ATP concentrations (K0.5 < 10 microM) on the K+-Na+ exchange on the internal sites and (ii) at higher, substrate, concentrations on the activation by K+ on the external sites.

UI MeSH Term Description Entries
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D012007 Rectum The distal segment of the LARGE INTESTINE, between the SIGMOID COLON and the ANAL CANAL. Rectums
D004284 Dogfish Sharks of the family Squalidae, also called dogfish sharks. They comprise at least eight genera and 44 species. Their LIVER is valued for its oil and its flesh is often made into fertilizer. Squalidae,Dogfishes
D004801 Eosine Yellowish-(YS) A versatile red dye used in cosmetics, pharmaceuticals, textiles, etc., and as tissue stain, vital stain, and counterstain with HEMATOXYLIN. It is also used in special culture media. Eosin,Eosine Yellowish,Tetrabromofluorescein,Acid Red 87,C.I. Acid Red 87,Eosin (yellowish) (free acid),Eosin Y,Eosine,Eosine Yellowish-(YS), Dipotassium Salt,Eosine Yellowish-(YS), Potassium, Sodium Salt
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

J C Skou, and M Esmann
January 1988, Progress in clinical and biological research,
J C Skou, and M Esmann
August 2004, Journal of enzyme inhibition and medicinal chemistry,
J C Skou, and M Esmann
December 1990, Alcoholism, clinical and experimental research,
J C Skou, and M Esmann
September 1990, The Journal of biological chemistry,
J C Skou, and M Esmann
December 2015, Biochemistry,
J C Skou, and M Esmann
August 1987, The Journal of biological chemistry,
J C Skou, and M Esmann
June 1999, The Journal of biological chemistry,
J C Skou, and M Esmann
January 1982, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!