Cyclic adenosine-3',5'-monophosphate stimulates islet B cell replication in neonatal rat pancreatic monolayer cultures. 1980

A Rabinovitch, and B Blondel, and T Murray, and D H Mintz

A possible role for cyclic adenosine 3',5'-monophosphate (cAMP) in islet B cell replication was examined in neonatal rat pancreatic monolayer cultures. Islet cells deteriorated and insulin release decreased during 12 d of culture in medium with 5.6 mM glucose, whereas the cells survived and insulin release increased during culture in medium with 5.6 mM glucose plus the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 0.1 mM), or in medium with 16.7 mM glucose with or without IBMX. IBMX also increased the mitotic index and stimulated dose-dependent increases in [(3)H]thymidine incorporation in nuclei of islet B cells in aldehydethionine stained radioautographs; maximal stimulation of B cell replication occurred with addition of 0.1 mM IBMX to 5.6 mM glucose (+170%, P < 0.001), and this increase was similar to that observed with 16.7 mM glucose (+185%, P < 0.001). Also, 8-bromo-adenosine-3',5-monophosphate, but not 8-bromo-guanosine-3',5'-monophosphate produced dose-dependent increases in islet B cell replication in medium with 5.6 mM glucose. Measurement of cAMP levels in the cultures revealed dissociations between effects on B cell replication and insulin release. Thus, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 5.6 mM glucose produced slightly greater increases in cAMP levels and B cell replication than did 16.7 mM glucose, whereas insulin release was increased significantly more with 16.7 mM glucose. Also, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 16.7 mM glucose stimulated further increases in cAMP levels and insulin release in the cultures, but no further increases in B cell replication. We conclude that (a) cAMP stimulates islet B cell replication, (b) cAMP may mediate the effects of glucose on B cell replication, and (c) mechanisms regulating B cell replication may be more sensitive to cAMP and/or different from those regulating insulin secretion.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
April 1983, Diabetes,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
February 1973, Endocrinology,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
July 1972, Molecular pharmacology,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
May 1978, Plant physiology,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
January 1985, Cancer research,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
October 1977, Acta endocrinologica,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
November 1986, The American journal of physiology,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
February 1974, Biochemical and biophysical research communications,
A Rabinovitch, and B Blondel, and T Murray, and D H Mintz
January 1972, Postepy biochemii,
Copied contents to your clipboard!