Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. 1980

V Rotter, and O N Witte, and R Coffman, and D Baltimore

When BALB/c mice were injected with a syngeneic cell line transformed by Abelson murine leukemia virus (A-MuLV), the tumor was usually lethal. In sera from tumor-bearing mice, and at highest levels in sera from mice that reject their tumors, was an antibody that immunoprecipitates a specific protein from [35S]-methionine-labeled A-MuLV-transformed BALB/c cells. This protein was not the previously characterized A-MuLV-specific protein (P120) but a 50,000-molecular-weight protein (P50). Such sera may also immunoprecipitate P120, but no other protein was reproducibly precipitated by them. A monoclonal antibody (RA3-2C2) that has been shown to stain normal B-lymphocytes also selectively immunoprecipitated P50. P50 was present in A-MuLV-transformed lymphoid and fibroblastic cells of a variety of mouse strains. One A-MuLV-transformed cell line had a very low P50 level, the L1-2 tumor of C57L origin. This tumor was previously shown to be rejected by C57L mice and is used to produce anti-P120 (anti-AbT) sera. P50 was not a Moloney MuLV protein and was found at low levels in normal cells of cells transformed by agents other than A-MuLV; thus, it was probably a host cell protein whose concentration was selectively accentuated by A-MuLV transformation. P50 was phosphorylated and, by using indirect immunofluorescence, anti-P50 serum stained live A-MuLV-transformed cells. The protein was not glycosylated and did not label by lactoperoxidase-catalyzed iodination. Thus, P50 was very like P120 in its cellular localization and properties, but it did not exhibit proptein kinase activity in vitro. The selective accentuation of this protein in A-MuLV transformants and its strong antigenicity in syngeneic animals suggest that it is a unique and functionally important protein.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D010750 Phosphoproteins Phosphoprotein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D005260 Female Females
D000011 Abelson murine leukemia virus A replication-defective strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) capable of transforming lymphoid cells and producing a rapidly progressing lymphoid leukemia after superinfection with FRIEND MURINE LEUKEMIA VIRUS; MOLONEY MURINE LEUKEMIA VIRUS; or RAUSCHER VIRUS. Abelson Leukemia Virus,Leukemia Virus, Abelson,Virus, Abelson Leukemia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V Rotter, and O N Witte, and R Coffman, and D Baltimore
January 1972, Journal of the National Cancer Institute,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
January 1988, Current topics in microbiology and immunology,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
September 1981, Journal of virology,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
September 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
V Rotter, and O N Witte, and R Coffman, and D Baltimore
January 1981, Progress in clinical and biological research,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
September 1979, Virology,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
January 1986, Current topics in microbiology and immunology,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
January 1980, Progress in clinical and biological research,
V Rotter, and O N Witte, and R Coffman, and D Baltimore
September 2023, Retrovirology,
Copied contents to your clipboard!