Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. 1980

P N Hoffman, and R J Lasek

We have examined slow axonal transport in regenerating motor neurons of the rat sciatic nerve. Using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) we previously found that the slow component is the vehicle for the axonal cytoskeletal proteins, i.e. the neurofilament triplet proteins, tubulin and actin. When these proteins are pulse-labeled by injecting [3H]- or [35S]-amino acids into the spinal cord, they are transported distally in the nerve as two distinguishable waves of radioactivity, SCa and SCb. In normal motor neurons, the neurofilament triplet proteins and the tubulin are transported in SCa at an average velocity of 1.7 mm/day; the less heavily labeled SCb which moves at 2-5 mm/day is the primary vehicle for actin. We now find that during regeneration the velocity of SCa is unchanged in the region of the axon between the cell body and the lesion, but the amount of labeled neurofilament triplet and associated tubulin transported in the axon is decreased in neurons which had been labeled 20 days post-lesion. In contrast, the labeling of the slowly transported proteins moving ahead of the neurofilament triplet is greater in regenerating nerves than in controls. On the basis of our findings, we propose that in motor axons the normal supply of cytoskeletal protein, which is continuously transported in the slow component, is sufficient to support regeneration. Nevertheless, the neuron cell body can alter the supply of these cytoskeletal proteins so as to enhance its regenerative capacity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P N Hoffman, and R J Lasek
October 1993, Current opinion in neurobiology,
P N Hoffman, and R J Lasek
October 2022, Biochemical and biophysical research communications,
P N Hoffman, and R J Lasek
February 1989, The Journal of cell biology,
P N Hoffman, and R J Lasek
December 1978, Journal of neurochemistry,
P N Hoffman, and R J Lasek
December 2017, Bio-protocol,
P N Hoffman, and R J Lasek
January 2016, Journal of neuroscience methods,
P N Hoffman, and R J Lasek
April 1986, Brain research bulletin,
Copied contents to your clipboard!