Organization of transfer ribonucleic acid genes in the Escherichia coli chromosome. 1980

R K Campen, and G L Duester, and W M Holmes, and J M Young

The arrangement of transfer ribonucleic acid (RNA) genes in the chromosome of Escherichia coli K-12 (C600) was examined with the techniques of restriction endonuclease digestion and Southern blotting. The number and size of restriction fragments containing transfer or ribosomal RNA sequences or both were estimated by a variety of restriction endonucleases, including EcoRI, BglI, SmaI, SalI, BamHI, and PstI. EcoRI liberated a minimum of 27 fragments which hybridized to transfer RNA and 16 which hybridized to ribosomal RNA. Enzymes which did not cut within the ribosomal RNA operons (PstI and BamHI) liberated 16 and 13 fragments, respectively, which hybridized to transfer RNA. Five PstI and six BamHi fragments also hybridized to ribosomal RNA, suggesting that there may be at least 11 chromosomal locations distinct from ribosomal RNA operons which encode transfer RNA genes. In addition, our data indicated that several transfer RNA genes may be very close to the 5' proximal ends of certain ribosomal RNA operons and close to the 3' distal ends of all seven ribosomal RNA operons. Similar studies have been carried out with 22 purified species of transfer RNA, and we report here the number and size of EcoRI restriction fragments which hybridize to these transfer RNA species.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

R K Campen, and G L Duester, and W M Holmes, and J M Young
December 1985, Microbiological reviews,
R K Campen, and G L Duester, and W M Holmes, and J M Young
April 1981, Journal of bacteriology,
R K Campen, and G L Duester, and W M Holmes, and J M Young
August 1967, Biochemistry,
R K Campen, and G L Duester, and W M Holmes, and J M Young
March 1968, Biochimica et biophysica acta,
R K Campen, and G L Duester, and W M Holmes, and J M Young
December 1967, The Journal of biological chemistry,
R K Campen, and G L Duester, and W M Holmes, and J M Young
January 1978, Biochemical Society transactions,
R K Campen, and G L Duester, and W M Holmes, and J M Young
March 1963, Biochimica et biophysica acta,
R K Campen, and G L Duester, and W M Holmes, and J M Young
August 1977, The Biochemical journal,
R K Campen, and G L Duester, and W M Holmes, and J M Young
August 1974, The Journal of biological chemistry,
Copied contents to your clipboard!