Methylation patterns of mycoplasma transfer and ribosomal ribonucleic acid. 1980

C C Hsuchen, and D T Dubin

The methylation patterns of transfer and ribosomal ribonucleic acid (RNA) from two mycoplasmas, Mycoplasma capricolum and Acholeplasma laidlawii, have been examined. The transfer RNA from the two mycoplasmas resembled that of other procaryotes in degree of methylation and general diversity of methylated nucleotides, and bore particular resemblance to Bacillus subtilis transfer RNA. The only unusual feature was the absence of m5U from M. capricolum transfer RNA. The methylation patterns of the mycoplasma 16S RNAs were also typically procaryotic, retaining the methylated residues previously shown to be highly conserved among eubacterial 16S RNAs. The mycoplasma 23S RNA methylation patterns were, on the other hand, quite unusual. M. capricolum 23S RNA contained only four methylated residues in stoichiometric amounts, all of which were ribose methylated. A. laidlawii 23S RNA contained the same ribose-methylated residues, plus in addition approximately six m5U residues. These findings are discussed in relation to the phylogenetic status of mycoplasma, as well as the possible role of RNA methylation.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009174 Mycoplasma A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS. Eperythrozoon,Haemobartonella,Mycoplasma putrefaciens,PPLO,Pleuropneumonia-Like Organisms,Pleuropneumonia Like Organisms
D000128 Acholeplasma laidlawii An organism originally isolated from sewage, manure, humus, and soil, but recently found as a parasite in mammals and birds. Mycoplasma laidlawii
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012266 Ribose A pentose active in biological systems usually in its D-form. D-Ribose,D Ribose
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D014498 Uracil One of four nucleotide bases in the nucleic acid RNA.

Related Publications

C C Hsuchen, and D T Dubin
September 1969, Biochemistry,
C C Hsuchen, and D T Dubin
August 1964, Biochimica et biophysica acta,
C C Hsuchen, and D T Dubin
May 1968, Journal of bacteriology,
C C Hsuchen, and D T Dubin
February 1971, European journal of biochemistry,
C C Hsuchen, and D T Dubin
September 1968, Biochemistry,
C C Hsuchen, and D T Dubin
June 1966, Journal of molecular biology,
Copied contents to your clipboard!