Altered purine and pyrimidine metabolism in erythrocytes with purine nucleoside phosphorylase deficiency. 1980

I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold

Purine and pyrimidine metabolism was compared in erythrocytes from three patients from two families with purine nucleoside phosphorylase deficiency and T-cell immunodeficiency, one heterozygote subject for this enzyme deficiency, one patient with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase, and two normal subjects. The erythrocytes from the heterozygote subject were indistinguishable from the normal erythrocytes. The purine nucleoside phosphorylase deficient erythrocytes had a block in the conversion of inosine to hypoxanthine. The erythrocytes with 0.07% of normal purine nucleoside phosphorylase activity resembled erythrocytes with hypoxanthine-guanine phosphoribosyltransferase deficiency by having an elevated intracellular concentration of PP-ribose-P, increased synthesis of PP-ribose-P, and an elevated rate of carbon dioxide release from orotic acid during its conversion to UMP. Two hypotheses to account for the associated immunodeficiency--that the enzyme deficiency leads to a block of PP-ribose-P synthesis or inhibition of pyrimidine synthesis--could not be supported by observations in erythrocytes from both enzyme-deficient families.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007153 Immunologic Deficiency Syndromes Syndromes in which there is a deficiency or defect in the mechanisms of immunity, either cellular or humoral. Antibody Deficiency Syndrome,Deficiency Syndrome, Immunologic,Deficiency Syndromes, Antibody,Deficiency Syndromes, Immunologic,Immunologic Deficiency Syndrome,Immunological Deficiency Syndromes,Antibody Deficiency Syndromes,Deficiency Syndrome, Antibody,Deficiency Syndrome, Immunological,Deficiency Syndromes, Immunological,Immunological Deficiency Syndrome,Syndrome, Antibody Deficiency,Syndrome, Immunologic Deficiency,Syndrome, Immunological Deficiency,Syndromes, Antibody Deficiency,Syndromes, Immunologic Deficiency,Syndromes, Immunological Deficiency
D007926 Lesch-Nyhan Syndrome An inherited disorder transmitted as a sex-linked trait and caused by a deficiency of an enzyme of purine metabolism; HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE. Affected individuals are normal in the first year of life and then develop psychomotor retardation, extrapyramidal movement disorders, progressive spasticity, and seizures. Self-destructive behaviors such as biting of fingers and lips are seen frequently. Intellectual impairment may also occur but is typically not severe. Elevation of uric acid in the serum leads to the development of renal calculi and gouty arthritis. (Menkes, Textbook of Child Neurology, 5th ed, pp127) Choreoathetosis Self-Mutilation Hyperuricemia Syndrome,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Disease,Choreoathetosis Self-Mutilation Syndrome,Complete HGPRT Deficiency Disease,Complete HPRT Deficiency,Complete Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency,Deficiency Disease, Complete HGPRT,Deficiency Disease, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency of Guanine Phosphoribosyltransferase,Deficiency of Hypoxanthine Phosphoribosyltransferase,HGPRT Deficiency,HGPRT Deficiency Disease, Complete,Hypoxanthine Guanine Phosphoribosyltransferase 1 Deficiency,Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Hypoxanthine Phosphoribosyltransferase Deficiency,Juvenile Gout, Choreoathetosis, Mental Retardation Syndrome,Juvenile Hyperuricemia Syndrome,Lesch-Nyhan Disease,Primary Hyperuricemia Syndrome,Total HPRT Deficiency,Total Hypoxanthine-Guanine Phosphoribosyl Transferase Deficiency,X-Linked Hyperuricemia,X-Linked Primary Hyperuricemia,Choreoathetosis Self Mutilation Hyperuricemia Syndrome,Choreoathetosis Self Mutilation Syndrome,Choreoathetosis Self-Mutilation Syndromes,Complete HPRT Deficiencies,Complete Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Deficiencies, Complete HPRT,Deficiencies, HGPRT,Deficiencies, Hypoxanthine Phosphoribosyltransferase,Deficiencies, Total HPRT,Deficiency Disease, Hypoxanthine Phosphoribosyl Transferase,Deficiency Diseases, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency, Complete HPRT,Deficiency, HGPRT,Deficiency, Hypoxanthine Phosphoribosyltransferase,Deficiency, Total HPRT,Guanine Phosphoribosyltransferase Deficiencies,Guanine Phosphoribosyltransferase Deficiency,HGPRT Deficiencies,HPRT Deficiencies, Complete,HPRT Deficiencies, Total,HPRT Deficiency, Complete,HPRT Deficiency, Total,Hyperuricemia Syndrome, Juvenile,Hyperuricemia Syndrome, Primary,Hyperuricemia Syndromes, Juvenile,Hyperuricemia Syndromes, Primary,Hyperuricemia, X-Linked,Hyperuricemia, X-Linked Primary,Hyperuricemias, X-Linked,Hyperuricemias, X-Linked Primary,Hypoxanthine Phosphoribosyl Transferase Deficiency Disease,Hypoxanthine Phosphoribosyltransferase Deficiencies,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Diseases,Juvenile Hyperuricemia Syndromes,Lesch Nyhan Disease,Lesch Nyhan Syndrome,Phosphoribosyltransferase Deficiencies, Guanine,Phosphoribosyltransferase Deficiencies, Hypoxanthine,Phosphoribosyltransferase Deficiency, Guanine,Phosphoribosyltransferase Deficiency, Hypoxanthine,Primary Hyperuricemia Syndromes,Primary Hyperuricemia, X-Linked,Primary Hyperuricemias, X-Linked,Self-Mutilation Syndrome, Choreoathetosis,Self-Mutilation Syndromes, Choreoathetosis,Syndrome, Choreoathetosis Self-Mutilation,Syndrome, Juvenile Hyperuricemia,Syndrome, Primary Hyperuricemia,Syndromes, Choreoathetosis Self-Mutilation,Syndromes, Juvenile Hyperuricemia,Syndromes, Primary Hyperuricemia,Total HPRT Deficiencies,Total Hypoxanthine Guanine Phosphoribosyl Transferase Deficiency,X Linked Hyperuricemia,X Linked Primary Hyperuricemia,X-Linked Hyperuricemias,X-Linked Primary Hyperuricemias
D008297 Male Males
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D010754 Phosphoribosyl Pyrophosphate The key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. Pyrophosphate, Phosphoribosyl
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children

Related Publications

I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
May 1978, The Journal of laboratory and clinical medicine,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 2000, Ryoikibetsu shokogun shirizu,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 1991, Immunodeficiency reviews,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 1978, Methods in enzymology,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
August 1972, Clinica chimica acta; international journal of clinical chemistry,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 1980, The Journal of clinical investigation,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 1998, Ryoikibetsu shokogun shirizu,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
January 2003, Nihon rinsho. Japanese journal of clinical medicine,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
December 1996, Nihon rinsho. Japanese journal of clinical medicine,
I H Fox, and J Kaminska, and N L Edwards, and E Gelfand, and K C Rich, and W N Arnold
February 1996, Clinical chemistry,
Copied contents to your clipboard!