Priming of the fluid pump by osmotic gradients across rabbit corneal endothelium. 1980

J Fischbarg, and G l Hofer, and R A Koatz

The present study shows that the inclusion of 5% Dextran (average mol. wt. 40 000) in solutions to preserve in vitro rabbit corneal endothelium induces a sizable osmotic flow across the preparation which is superimposed on the existing fluid transport. Furthermore, even after fluid transport ceases due to in vitro deterioration, the Dextran-induced flow remains for some addition time. The osmotic permeability was 162 +/- 17 micrometer/s in the presence of glucose and 451 +/- 84 micrometer/s in its absence. The latter, comparatively high value suggests that such osmotic flow traverses the intracellular junctions. In addition, temporary (10--15 min) imposition of an osmotic gradient has a separate stimulatory 'priming' effect on the rate of fluid transport. Thus, the rate of fluid pumping increased by about 40% after challenge with Dextran. It was further noted that, after addition of Dextran, preparations in the absence of glucose escape gross deterioration for a time longer than those in the presence of glucose. On the other hand, mere addition of Dextran to a glucose-containing solution does not appear to prolong the estimated 'survival time' of the pumping mechanism. The sizable osmotic flows and the priming effect described here may provide a physiological context with which previously described Dextran effects on cornea preservation can now be compared.

UI MeSH Term Description Entries
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014882 Water-Electrolyte Balance The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM. Fluid Balance,Electrolyte Balance,Balance, Electrolyte,Balance, Fluid,Balance, Water-Electrolyte,Water Electrolyte Balance

Related Publications

J Fischbarg, and G l Hofer, and R A Koatz
June 1977, The Journal of membrane biology,
J Fischbarg, and G l Hofer, and R A Koatz
February 1988, Investigative ophthalmology & visual science,
J Fischbarg, and G l Hofer, and R A Koatz
November 1972, Biochimica et biophysica acta,
J Fischbarg, and G l Hofer, and R A Koatz
March 1977, Experimental eye research,
J Fischbarg, and G l Hofer, and R A Koatz
October 1988, Cryobiology,
J Fischbarg, and G l Hofer, and R A Koatz
July 1981, Archives of ophthalmology (Chicago, Ill. : 1960),
J Fischbarg, and G l Hofer, and R A Koatz
January 1981, Current eye research,
J Fischbarg, and G l Hofer, and R A Koatz
February 1978, The Journal of physiology,
J Fischbarg, and G l Hofer, and R A Koatz
April 2007, Experimental eye research,
Copied contents to your clipboard!