Central somatosensory conduction in man: neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and earlobes. 1980

J E Desmedt, and G Cheron

Early somatosensory evoked potential (SEP) components to median nerve or finger stimulation were recorded with non-cephalic references in normal young adults. Detailed topographic data over scalp and neck were related to anatomical observations on the actual conduction distances in dorsal column, medial lemniscus and thalamo-cortical parts of the somatosensory pathway. The extrapolation of afferent conduction velocity (CV) measured from sensory nerve potentials along the peripheral nerve to the C6-C7 spinal segments identified the spinal entry time with the onset of the neck N11 or scalp P11 (far field 2 or FF2). The first far field (FF1) is generated in the nerve proximal to axilla. The definite latency shift of the spinal negativity along the neck indicates a CV of 58 m/sec. Data about the maximal diameter of lemniscal axons in man were used to calculate a CV of 40.5 m/sec. Consideration of transit times from spinal entry to cortex and of synaptic delays clarified the arrival times of the afferent volley at various relay nuclei, and also suggested a thalamo-cortical CV of about 33 m/sec. Interpeak and onset-to-peak measures on scalp far fields suggest that FF3-FF4 are generated in medial lemniscus rather than above the thalamus. Consistent differences in amplitude, but not in wave form, were recorded at right and left earlobes for FF2 (larger ipsilaterally) and FF3-FF4 (larger contralaterally). The scalp topography of far fields was analysed in detail.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D008475 Median Nerve A major nerve of the upper extremity. In humans, the fibers of the median nerve originate in the lower cervical and upper thoracic spinal cord (usually C6 to T1), travel via the brachial plexus, and supply sensory and motor innervation to parts of the forearm and hand. Median Nerves,Nerve, Median,Nerves, Median
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004423 Ear The hearing and equilibrium system of the body. It consists of three parts: the EXTERNAL EAR, the MIDDLE EAR, and the INNER EAR. Sound waves are transmitted through this organ where vibration is transduced to nerve signals that pass through the ACOUSTIC NERVE to the CENTRAL NERVOUS SYSTEM. The inner ear also contains the vestibular organ that maintains equilibrium by transducing signals to the VESTIBULAR NERVE. Vestibulocochlear System,Vestibulocochlear Apparatus,Apparatus, Vestibulocochlear,Ears,System, Vestibulocochlear
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females

Related Publications

J E Desmedt, and G Cheron
January 1982, Electroencephalography and clinical neurophysiology. Supplement,
J E Desmedt, and G Cheron
March 1984, Electroencephalography and clinical neurophysiology,
J E Desmedt, and G Cheron
May 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
J E Desmedt, and G Cheron
November 1976, Electroencephalography and clinical neurophysiology,
J E Desmedt, and G Cheron
September 1978, Electroencephalography and clinical neurophysiology,
J E Desmedt, and G Cheron
July 1986, Electroencephalography and clinical neurophysiology,
J E Desmedt, and G Cheron
December 1977, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!