ATP-induced lysis of rat parotid secretory granules: possible role of ATP in exocytotic release. 1980

S G Oberg, and M R Robinovitch

Secretory vesicles isolated from a variety of mammalian tissues are known to lyse and thereby release their secretory products when exposed to ATP. This process, which will be termed ATP-induced lysis, has been studied most extensively using adrenal chromaffin-granule preparations. We report here that ATP causes the lysis of a highly purified preparation of rat parotid secretory granules. The rate of granule lysis was measured spectrophotometrically, and ATP-induced lysis was expressed as the increase in the rate of lysis (r = % lysis per min) when ATP was added. This lytic process was characterized with respect to pH, temperature, osmolarity, and the ionic composition of the media. ATP-induced lysis of parotid granules was found to have the following properties in common with the extensively characterized chromaffin-granule process: 1. It is a saturable function of ATP with half-maximal rates observed at 0.5 +/- 0.1 mM ATP. 2. It is temperature dependent, eg, r = 6.1 +/- 2.1%/min at 30 degrees C vs 12.2 +/- 2.5%/min at 37 degrees C. 3. It is inhibited in hyperosmotic media, eg, r = 5.3 +/- 0.3%/min at 0.3 OsM vs 0.8 +/- 0.2%/min at 0.4 OsM. 4. It shows a nucleotide preference of ATP = GTP greater than ADP greater than AMP greater than CTP = ITP. 5. It has an anion requirement. The above findings, combined with reports of ATP-induced lysis of cholinergic, insulin, and posterior-pituitary vesicles, imply that ATP-induced lysis may reflect an ATP-dependent property of all secretory vesicles, and as such, this vesicle property could play a similar role in each exocytotic release process. Using a model system, Miller and Racker [22] made a surprising finding that the extent of which liposomes fuse with a black lipid membrane depends on the osmotic gradient across the vesicle membrane. In view of the osmotic dependence of ATP-induced lysis in this and other secretory-vesicle preparations, we postulate that ATP may prime secretory vesicles for fusion with the plasma membrane by inducing and/or maintaining an osmotic gradient across the vesicle membrane.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.

Related Publications

S G Oberg, and M R Robinovitch
March 2013, The Journal of membrane biology,
S G Oberg, and M R Robinovitch
May 1982, The Journal of biological chemistry,
S G Oberg, and M R Robinovitch
December 1991, Journal of dental research,
S G Oberg, and M R Robinovitch
January 1982, Cell and tissue research,
S G Oberg, and M R Robinovitch
September 1983, Endocrinology,
S G Oberg, and M R Robinovitch
November 1975, Israel journal of medical sciences,
S G Oberg, and M R Robinovitch
December 1985, The Journal of biological chemistry,
S G Oberg, and M R Robinovitch
February 1975, Biochimica et biophysica acta,
S G Oberg, and M R Robinovitch
November 1984, The Journal of biological chemistry,
Copied contents to your clipboard!