Effect of neonatal thyroid deficiency on the catecholamine, substance P, and thyrotropin-releasing hormone contents of discrete rat brain nuclei. 1981

A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden

The effects of neonatal thyroidectomy and thyroid hormone replacement therapy on the development of catecholamine-, TRH-, and substance P-containing neurons in discrete rat brain nuclei were studied. Newborn male rats were rendered hypothyroid by the injection of 125 muCi 131I and, after 45 days, were compared with normal littermate controls and 131I-injected animals subsequently maintained on T4 injections. The peptide or catecholamine content of discrete brain nuclei removed by punches of frozen brain slices was measured by RIA or radioenzymatic assay, respectively. The success of the thyroidectomy was verified by criteria of weight, length, plasma T4, and pituitary GH content. Animals receiving T4 replacement therapy were indistinguishable from normal littermates. Substance P was measured in 32 different brain nuclei and was significantly increased in 19 of these areas in hypothyroid animals. No changes in norepinephrine were detected, and the dopamine content of all but 3 brain nuclei was increased by thyroidectomy. The TRH concentration was drastically reduced in the median eminence of hypothyroid animals and also changed in 3 other extrahypothalamic areas. All of the changes seen in catecholamine, TRH, and substance P distribution in hypothyroid animals were completely reversed by T4 replacement therapy. These results demonstrate changes in brain peptide neurotransmitters during the hypothyroid state and open new vistas for comprehension of biochemical mechanisms underlying central nervous system malfunction.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D013965 Thyroidectomy Surgical removal of the thyroid gland. (Dorland, 28th ed) Thyroidectomies
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate

Related Publications

A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
January 1987, Neurochemical research,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
July 1974, Science (New York, N.Y.),
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
November 1980, Acta medica Okayama,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
April 1995, Metabolism: clinical and experimental,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
December 1983, Neuroscience,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
January 1983, Folia psychiatrica et neurologica japonica,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
August 1979, Endocrinology,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
June 1988, No to shinkei = Brain and nerve,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
December 1975, The Journal of clinical investigation,
A Dupont, and J H Dussault, and D Rouleau, and T DiPaolo, and P Coulombe, and B Gagné, and Y Mérand, and S Moore, and N Barden
January 1986, Brain research,
Copied contents to your clipboard!