Effects of aclacinomycin on cell survival and cell cycle progression of cultured mammalian cells. 1981

F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed

The effects of aclacinomycin (ACM; NSC 208734) on cell viability, growth, and colony formation were investigated in suspension (Friend leukemia and L1210) and adherent (Chinese hamster ovary) cell systems. Cell cycle progression and the effect of the drug on various transition points in the cell cycle (i.e. G1 to S phase, through a window in early S phase and G2 phase to mitosis) were monitored by flow cytometry. Formation of Chinese hamster ovary cell colonies was inhibited by 50% following 24 hr of exposure to 0.05 micrograms ACM per ml whereas 1 hr of exposure to 1.0 micrograms ACM per ml reduced colony formation by only 30%. Stationary cultures required a drug concentration more than 5 times higher to reduce colony formation by an equivalent amount when present for 24 hr. Short-term (1-hr) exposure to drug concentrations up to 1.0 micrograms/ml had no effect on colony formation of stationary-phase Chinese hamster ovary cells. Cell growth was inhibited by 50% in suspension cultures of Friend leukemia and L1210 cells when exposed for 24 hr to 0.024 and 0.053 micrograms ACM per ml, respectively. Continuous drug exposure of Friend leukemia and L1210 cells to ACM concentrations of 0.05 to 0.1 micrograms/ml led to a slow down in cell progression manifested as an accumulation of cells in G2 + M phase by 24-hr and then in G1 phase by 48-hr culture. However, brief (1-hr) exposure of L1210 cells to 0.5 micrograms/ml resulted in an irreversible accumulation of cells in G2 + M phase. A more detailed examination of drug effects on the cell cycle determined that 0.1 micrograms ACM per ml resulted in a slow down in L1210 cells leaving G1 phase and entering mitosis and an accumulation of cells in G2 phase, although early S-phase cells appeared unaffected. At a 5 times higher drug concentration, exit of cells from G1 was almost completely halted, passage of cells through early S was slowed, and the entrance of cells into mitosis plateaued 3.5 hr after addition of the drug; G2-phase cells were only mildly affected. The RNA content of all cells examined was reduced by 35 to 50% depending upon dose and time of exposure. These findings are discussed in terms of the known biochemical effects of ACM on RNA and protein synthesis.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009279 Naphthacenes Polyacenes with four ortho-fused benzene rings in a straight linear arrangement. This group is best known for the subclass called TETRACYCLINES. Tetracenes,Benz(b)Anthracenes
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey

Related Publications

F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
October 1983, Gan,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
February 2007, Methods (San Diego, Calif.),
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
November 1981, Cancer research,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
December 1965, Science (New York, N.Y.),
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
September 1978, Cancer research,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
October 1990, Nihon Gan Chiryo Gakkai shi,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
December 1976, Cancer treatment reports,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
August 1992, Bioscience, biotechnology, and biochemistry,
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
October 2011, Cell cycle (Georgetown, Tex.),
F Traganos, and L Staiano-Coico, and Z Darzynkiewicz, and M R Melamed
July 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!