Effect of quinacrine on nuclear structure and RNA synthesis in cultured rat hepatocytes. 1981

E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion

The effects of quinacrine, an antimetabolite which intercalates into DNA, on the ultrastructure of interphase nuclei and on RNA turnover were studied in primary cultures of rat hepatocytes. Procedures included ultrastructural cytochemical staining for ribonucleoprotein and DNA, autoradiography, and measurement of labeled uridine uptake and incorporation. Addition to the culture medium of a nontoxic dose (10 microM for 30 min) reduces the net accumulation of labeled uridine in RNA. This involves first heterogeneous RNA and then ribosomal RNA since their structural precursors, interchromatin fibrils and nucleolar fibrils, respectively, diminish in that order. Intranucleolar chromatin retracts, and perinucleolar chromatin becomes unusually condensed. A toxic dose (50 microM for 30 min) produces greater inhibition of tritiated uridine incorporation in RNA. This precedes and is not due to a drop in uridine uptake into the cells. Toxic doses produce unusually large clusters of interchromatin granules which are embedded in an unusual dense material which stains positively for ribonucleoprotein. Three regions of the chromatin are altered. (a) Perinuclear condensed chromatin retracts from the nuclear envelope, remaining attached by short DNA-containing bridges. (b) The normally dispersed nucleoplasmic chromatin condenses into a stainable network which retracts centrifugally. (c) Perinucleolar chromatin becomes a network of small highly condensed masses or bands interconnected by fibrils which are either decondensed or stretched. These alterations in chromatin structure probably form the basis of quinacrine-impaired nuclear metabolism.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011796 Quinacrine An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2. Mepacrine,Acrichine,Atabrine,Atebrin,Quinacrine Dihydrochloride,Quinacrine Dihydrochloride, Dihydrate,Quinacrine Dihyrochloride, (R)-Isomer,Quinacrine Dihyrochloride, (S)-Isomer,Quinacrine Dimesylate,Quinacrine Hydrochloride,Quinacrine Monoacetate,Quinacrine Monohydrochloride,Quinacrine Monomesylate,Quinacrine, (+-)-Isomer,Quinacrine, (R)-Isomer,Quinacrine, (S)-Isomer,Dihydrochloride, Quinacrine,Dimesylate, Quinacrine,Hydrochloride, Quinacrine,Monoacetate, Quinacrine,Monohydrochloride, Quinacrine,Monomesylate, Quinacrine
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
January 1979, Experimental gerontology,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
August 1998, World journal of gastroenterology,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
December 1998, Metabolism: clinical and experimental,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
July 1991, The American journal of physiology,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
February 1990, Biochimica et biophysica acta,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
February 1989, Liver,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
November 1980, Cytometry,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
March 1989, The Journal of biological chemistry,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
March 2001, Life sciences,
E H Leduc, and W Bernhard, and A Viron, and J Fain, and E Puvion
July 1984, Il Farmaco; edizione scientifica,
Copied contents to your clipboard!