Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium. 1981

R W Mink, and R B Hespell

Selenomonas ruminantium, a strictly anaerobic ruminal bacterium, was grown at various dilution rates (D = 0.05, 0.25, and 0.35 h-1) under glucose-limited continuous culture conditions. Suspensions of washed cells prepared anaerobically in mineral buffer were subjected to nutrient starvation (24 to 36 h; 39 degrees C; N2 atmosphere). Regardless of growth rate, viability declined logarithmically, and within about 2.5 h, about 50% of the populations were nonviable. After 24 h of starvation, the numbers of viable cells appeared to be inversely related to growth rate, the highest levels occurring with the slowest grown population. Cell dry weight, carbohydrate, protein, ribonucleic acid (RNA), and deoxyribonucleic acid declined logarithmically during starvation, and the decline rates of each were generally greater with cells grown at higher D values. Both cellular carbohydrate and RNA declined substantially during the first 12 h of starvation. Most of the cellular RNA that disappeared was found in the suspending buffer as low-molecular-weight, orcinol-positive materials. During growth, S. ruminantium made a variety of fermentation acids from glucose, but during starvation, acetate was the only acid made from catabolism of cellular material. Addition of glucose or vitamins to starving cell suspensions did not decrease loss of viability, whereas a starvation in the spent culture medium resulted in a slight decrease in the rate of viability loss. Overall, the data indicate that S. ruminantium strain D has very little survival capacity under the conditions tested compared with other bacterial species that have been studied.

UI MeSH Term Description Entries
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006089 Gram-Negative Anaerobic Bacteria A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method. Gram Negative Anaerobic Bacteria
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic
D050260 Carbohydrate Metabolism Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES. Metabolism, Carbohydrate
D019802 Succinic Acid A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Potassium Succinate,Succinate,1,2-Ethanedicarboxylic Acid,1,4-Butanedioic Acid,Ammonium Succinate,Butanedioic Acid,1,2 Ethanedicarboxylic Acid,1,4 Butanedioic Acid,Succinate, Ammonium,Succinate, Potassium

Related Publications

R W Mink, and R B Hespell
November 1988, Journal of bacteriology,
R W Mink, and R B Hespell
April 1963, Nature,
R W Mink, and R B Hespell
February 1989, The Journal of applied bacteriology,
R W Mink, and R B Hespell
March 1980, Applied and environmental microbiology,
R W Mink, and R B Hespell
February 1978, Applied and environmental microbiology,
R W Mink, and R B Hespell
October 1993, FEMS microbiology letters,
R W Mink, and R B Hespell
April 2011, Applied and environmental microbiology,
Copied contents to your clipboard!