Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. 1982

P E Klebba, and M A McIntosh, and J B Neilands

Using biological iron chelators to control specifically iron availability to Escherichia coli K-12 in conjunction with radioactive pulse-labels, we examined the biosynthesis of six iron-regulated membrane proteins. Iron deprivation induced the synthesis of five proteins, which had molecular weights of 83,000 (83K), 81K (Fep), 78K (TonA), 74K (Cir), and 25K. The kinetics of induction were the same in entA and entA(+) strains, but were affected by the initial iron availability in the media. Iron-poor cells induced rapidly (half-time, 10 min), whereas iron-rich cells began induction after a lag and showed a slower induction half-time (30 min). Within this general pattern of induction after iron deprivation, several different kinetic patterns were apparent. The 83K, 81K, and 74K proteins were coordinately controlled under all of the conditions examined. The 78K and 25K proteins were regulated differently. The synthesis of a previously unrecognized 90K inner membrane protein was inhibited by iron deprivation and stimulated by iron repletion. Both ferrichrome and ferric enterobactin completely repressed 81K and 74K synthesis when the siderophores were supplied at concentrations of 5 muM in vivo (half-time, 2.5 min). At concentrations less than 5 muM, however, both siderophores repressed synthesis only temporarily; the duration of repression was proportional to the amount of ferric siderophore added. The half-lives of the 81K and 74K mRNAs, as measured by rifampin treatment, were 1.2 and 1.6 min, respectively. The results of this study suggest that enteric bacteria are capable of instantaneously detecting and reacting to fluctuations in the extracellular iron concentration and that they store iron during periods of iron repletion for utilization during periods of iron stress. Neither iron storage nor iron regulation of envelope protein synthesis is dependent on the ability of the bacteria to form heme.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004758 Enterobactin An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria. Enterochelin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005291 Ferrichrome A cyclic peptide consisting of three residues of delta-N-hydroxy-delta-N-acetylornithine. It acts as an iron transport agent in Ustilago sphaerogena.
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

P E Klebba, and M A McIntosh, and J B Neilands
June 1994, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
P E Klebba, and M A McIntosh, and J B Neilands
February 1974, FEBS letters,
P E Klebba, and M A McIntosh, and J B Neilands
January 1988, Annual review of cell biology,
P E Klebba, and M A McIntosh, and J B Neilands
August 1979, The Biochemical journal,
P E Klebba, and M A McIntosh, and J B Neilands
December 1988, Antimicrobial agents and chemotherapy,
P E Klebba, and M A McIntosh, and J B Neilands
January 1979, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
P E Klebba, and M A McIntosh, and J B Neilands
May 1981, Journal of bacteriology,
Copied contents to your clipboard!