Nicotinic postsynaptic membranes from Torpedo: sidedness, permeability to macromolecules, and topography of major polypeptides. 1982

P A St John, and S C Froehner, and D A Goodenough, and J B Cohen

Experiments were conducted to examine the topographic arrangement of the polypeptides of the acetylcholine receptor (AcChR) and the nonreceptor Mr 43,000 protein in postsynaptic membranes isolated from Torpedo electric organ. When examined by electron microscopy, greater than 85% of vesicles were not permeable to ferritin or lactoperoxidase (LPO). Exposure to saponin was identified as a suitable procedure to permeabilize the vesicles to macromolecules with minimal alteration of vesicle size or ultrastructure. The sidedness of vesicles was examined morphologically and biochemically. Comparison of the distribution of intramembrane particles on freeze-fractured vesicles and the distribution found in situ indicated that greater than 85% of the vesicles were extracellular-side out. Vesicles labeled with alpha-bungarotoxin (alpha-Bgtx) were reacted with antibodies against alpha-BgTx or against purified AcChR of Torpedo. Bound antibodies were detected by the use of ferritin-conjugated goat anti-rabbit antibody and were located on the outside of greater than 99% of labeled vesicles. Similar results were obtained for normal vesicles or vesicles exposed to saponin. Quantification of the amount of [3H]-alpha-BgTx bound to vesicles before and after they were made permeable with saponin indicated that less than 5% of alpha-BgTx binding sites were cryptic in normal vesicles. It was concluded that greater than 95% of postsynaptic membranes were oriented extracellular-side out. LPO-catalyzed radioiodinations were performed on normal and saponin-treated vesicles and on vesicles from which the Mr (relative molecular mass) 43,000 protein had been removed by alkaline extraction. In normal vesicles, polypeptides of the AcChR were iodinated while the Mr 43,000 protein was not. In vesicles made permeable with saponin, the pattern of labeling of AcChR polypeptides was unchanged, but the Mr 43,000 protein was heavily iodinated. The relative iodination of AcChR polypeptides was unchanged in membranes equilibrated with agonist or with alpha-BgTx or after alkaline-extraction. It was concluded that the Mr 43,000 protein is present on the intracellular surface of the postsynaptic membrane and that AcChR polypeptides are exposed on the extracellular surface.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
January 1974, Advances in cytopharmacology,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
November 2013, Quarterly reviews of biophysics,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
February 1979, Proceedings of the National Academy of Sciences of the United States of America,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
November 1987, Biochemistry,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
October 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
May 1972, Chemistry and physics of lipids,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
January 1980, Biochemical and biophysical research communications,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
January 1972, Biomembranes,
P A St John, and S C Froehner, and D A Goodenough, and J B Cohen
September 1984, British journal of pharmacology,
Copied contents to your clipboard!