Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. 1981

J Sonn, and B Acad, and A Mayevsky, and J Kedem

An attempt was made to differentiate between autoregulatory coronary vasodilation and changes in vasomotor tone produced by factors extrinsic to the heart. this was done by investigating the relation between local cardiac force and local coronary blood supply. Intracellular NADH redox levels were also measured in order to further elucidate the oxygen balance under various experimental conditions. In anaesthetized open-chest dogs, local blood supply was estimated with the aid of a thermistor probe, and the oxidation-reduction state of mitochondrial pyridine nucleotide was measured by a surface fluorometric technique. Local myocardial contractile force, as well as blood pressure and ECG were recorded simultaneously with the above parameters. The heart was paced at frequencies from 60/min to 300/min with an electronic stimulator, under both normoxic and hypopneic conditions. It was found that elevation of heart rate caused a progressive increase in local blood flow during both normal and hypopneic ventilation. The absolute flow values during hypopnea were approximately double those during normoxia. Heart rates above 120/min or 150/min resulted in a progressive increase in NADH fluorescence. This response to elevated heart rate was less prominent or absent during hypopnea. Contractile force during hypopnea was greater at elevated heart rates than during normal breathing. Data are brought which suggest that whereas vasodilation following increased heart rate is probably due to an autoregulatory mechanism, the marked vasodilatatory effect of hypopnea is related to elevated arterial CO2 levels. It is suggested that hypercapnia markedly stimulates extrinsic coronary vasodilation thereby supplying enough oxygen to maintain contractility even at very high heart rates. Moreover, intracellular O2 concentration (mitochondrial NADH level) is maintained at a normal level despite the greatly increased demand.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

J Sonn, and B Acad, and A Mayevsky, and J Kedem
September 1989, Masui. The Japanese journal of anesthesiology,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
July 1998, Zhonghua yi xue za zhi,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
June 1991, Circulation,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
June 1985, Chest,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
January 1992, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
November 1991, Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
September 1992, Masui. The Japanese journal of anesthesiology,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
February 1976, The Journal of pharmacology and experimental therapeutics,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
December 1962, Circulation research,
J Sonn, and B Acad, and A Mayevsky, and J Kedem
January 1970, European journal of pharmacology,
Copied contents to your clipboard!