Location of monovalent cation binding sites in the gramicidin channel. 1982

D W Urry, and K U Prasad, and T L Trapane

Six syntheses of gramicidin A have been carried out, each with 90% 13 C enrichment of a single carbonyl carbon these being the formyl, Val-1, Trp-9, Trp-11, Trp-13, and Trp-15 carbonyl carbons. Each gramicidin A was incorporated as the channel state into phospholipid structures, and the chemical shift of the carbonyl carbon resonance was monitored by 13C NMR as a function of ion concentration. Plots of Na+- and Tl+-induced chemical shifts as a function of carbonyl location in the channel indicate two symmetrically related binding sites centered at the tryptophan carbonyls and separated by 23 A. The absence of ion-induced chemical shifts for the formyl and Val-1 carbonyl carbon resonances indicates that there is no binding site midway through the channel but rather a central free-energy barrier for ion transit through the channel. Ion induced chemical shifts of the tryptophan carbonyl carbon resonances at 100 mM Na+ verify that the tight binding constant (Kbt congruent to 70 M-1), observed with 23Na NMR, results from binding within the channel. This observation and the lateral, triangular distribution of the coordinating Trp-9, -11, and -13 carbonyls combine to provide an experimental demonstration that the carbonyls of the walls of the channel directly coordinate the ion, successfully competing with the polar solvent. With the binding sites verified and localized, it is possible to conclude that the transport mechanism for Na+ is well represented by the case of the two-site model [D. W. Urry, Venkatachalam, C. M., Spisni, A., Läuger, P. & Khaled, M. A. (1980) Proc. Natl. Acad. Sci. USA 77, 2028--2032].

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D006096 Gramicidin A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN. Gramicidin A,Gramicidin A(1),Gramicidin B,Gramicidin C,Gramicidin D,Gramicidin Dubos,Gramicidin J,Gramicidin K,Gramicidin NF,Gramicidin P,Gramicidin S,Gramicidins,Gramoderm,Linear Gramicidin,Gramicidin, Linear
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013793 Thallium A heavy, bluish white metal, atomic number 81, atomic weight [204.382; 204.385], symbol Tl. Thallium-205,Thallium 205
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

D W Urry, and K U Prasad, and T L Trapane
March 1991, Biopolymers,
D W Urry, and K U Prasad, and T L Trapane
June 1979, Nature,
D W Urry, and K U Prasad, and T L Trapane
April 1991, Journal of molecular biology,
D W Urry, and K U Prasad, and T L Trapane
July 1996, Journal of magnetic resonance. Series B,
D W Urry, and K U Prasad, and T L Trapane
February 2013, Chemico-biological interactions,
D W Urry, and K U Prasad, and T L Trapane
October 2009, Acta crystallographica. Section F, Structural biology and crystallization communications,
D W Urry, and K U Prasad, and T L Trapane
December 1974, Biochemistry,
Copied contents to your clipboard!