Shiverer peripheral myelin contains P2. 1982

J Winter

Myelin-deficient mutant mice, such as shiverer, can provide information about the normal mechanisms involved in myelination. The shiverer mouse carries a recessive, autosomal mutation resulting in an extreme deficiency in central myelin, and the small amount of myelin present is poorly compacted; the peripheral myelin, however, appears essentially normal. As the amount of myelin basic protein (P1) in both central and peripheral nervous system myelin is extremely low in shiverer, it is possible that P1 is essential for the normal formation and compaction of central myelin, but not of peripheral myelin. Some other protein would then be responsible for the formation of compact peripheral myelin in shiverer. Peripheral myelin contains another basic protein, designated P2, which could be a possible candidate for this role. Kirschner and Ganser, however, using SDS-polyacrylamide gel electrophoresis, reported that P2, as well as P1, is absent from shiverer sciatic nerve. This is an important observation if correct, because it not only excludes the possibility that P2 is required for compaction but also makes it less likely that the deficiency in P1 is the primary defect in shiverer. As P2 in rat and mouse has frequently been confused with another small basic protein (related to P1) in SDS-polyacrylamide gels, it seemed worthwhile to reassess this aspect of the Kirschner and Ganser observations. Immunohistochemistry and immunoblotting have been used here to show unambiguously that P2 is present in shiverer peripheral myelin.

UI MeSH Term Description Entries
D008821 Mice, Quaking Mice homozygous for the mutant autosomal recessive gene, quaking (qk), associated with disorder in myelin formation and manifested by axial tremors. Quaking Mice
D009185 Myelin Proteins MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure. Myelin Protein,Protein, Myelin,Proteins, Myelin
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J Winter
October 1980, The Journal of comparative neurology,
J Winter
January 1980, Progress in clinical and biological research,
J Winter
January 1981, Transactions of the American Neurological Association,
J Winter
March 1980, Journal of immunology (Baltimore, Md. : 1950),
J Winter
December 1980, The Journal of comparative neurology,
J Winter
September 1982, Journal of neurochemistry,
J Winter
February 1980, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!