Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. 1982

J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal

The effect of electric footshocks and of exposure to environmental stimuli paired with electrical shocks upon the dopaminergic activity in various cortical and limbic areas of the rat were evaluated by measuring dihydroxyphenylacetic acid (DOPAC) levels in these areas. In animals exposed to a 20 min electric footshock session DOPAC concentrations were significantly increased in the antero-medial and sulcal frontal cortices, olfactory tubercle, nucleus accumbens and amygdaloid complex (by 66, 37, 28, 55 and 90% respectively). Re-exposure of rats to an environment where they had been shocked 24 h earlier induced an elevation of DOPAC content only in the anteromedial frontal cortex (by 47%). Plasma corticosterone levels were elevated in both situations. No change in serotonin or 5-hydroxyindolacetic acid content of these areas could be detected in either situation. The results show that electric footshocks and environmental stimuli associated to previous shocks both activate central dopaminergic systems, although the patterns of activation are different.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
January 1988, Experimental brain research,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
March 1984, Pharmacology, biochemistry, and behavior,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
September 1980, Science (New York, N.Y.),
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
May 1981, Behavioural brain research,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
May 1976, The Journal of pharmacy and pharmacology,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
April 1988, Biological psychiatry,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
November 1979, European journal of pharmacology,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
September 1991, Journal of neurochemistry,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
June 1991, Physiology & behavior,
J P Herman, and D Guillonneau, and R Dantzer, and B Scatton, and L Semerdjian-Rouquier, and M Le Moal
June 1975, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!