High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids. 1982

D G Gorenstein, and E M Goldfield

The temperature dependence of the 31P NMR spectra of yeast phenylalanine tRNA, E. coli tyrosine, glutamate (2), and formylmethione tRNA, and bovine liver aspartate (2b) tRNA is presented. The major difference between the 31P NMR spectra of the different acceptor tRNAs is in the main cluster region between -0.5 and -0.3 ppm. This confirms earlier assignment of the main cluster region to the undistorted phosphate diesters in the hair-pin loops and helical stems. In addition the 31P NMR spectra for all tRNAs reveal approximately 16 non-helical diester signals spread over approximately 7 ppm besides the downfield terminal 3'-phosphate monoester. In the presence of 10 mM Mg++, most scattered and main cluster signals do not shift between 22 and 66 degrees C, thus supporting our earlier hypothesis that 31P chemical shifts are sensitive to phosphate ester torsional and bond angles. At greater than 70 degrees, all of the signals merge into a single random coil conformation signal. Measured spin-lattice and spin-spin relaxation times for tRNAPhe reveal another lower temperature transition associated with a conformational change of the anticodon loop besides the thermal denaturation process. A number of the scattered peaks are shifted (0.2--1.7 ppm) and broadened between 22 and 66 degrees C in the presence of Mg++ as a result of this conformational transition. The effects Mg++ and Mn++ ions on the 31P NMR spectra of tRNAPhe have been used to identify some of the scattered signals upfield and downfield from the main cluster signals. The 31P NMR spectrum of the dimer formed between yeast tRNAPhe and E. coli tRNA2Glu is reported. This dimer stimulates codon-anticodon interaction since the anticodon triplets of the two tRNAs are complementary. Evidence is presented that the anticodon-anticodon interaction alters the anticodon conformation and partially disrupts the tertiary structure of the tRNA.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

D G Gorenstein, and E M Goldfield
November 1966, Biochemistry,
D G Gorenstein, and E M Goldfield
January 2011, Angewandte Chemie (International ed. in English),
D G Gorenstein, and E M Goldfield
October 1969, Angewandte Chemie (International ed. in English),
D G Gorenstein, and E M Goldfield
June 1964, Nature,
D G Gorenstein, and E M Goldfield
November 2015, Progress in nuclear magnetic resonance spectroscopy,
D G Gorenstein, and E M Goldfield
February 1982, European journal of biochemistry,
D G Gorenstein, and E M Goldfield
April 2012, Environmental science & technology,
D G Gorenstein, and E M Goldfield
February 1971, European journal of biochemistry,
D G Gorenstein, and E M Goldfield
August 1967, Biochemistry,
Copied contents to your clipboard!