A Golgi study of rat neostriatal neurons: light microscopic analysis. 1982

H T Chang, and C J Wilson, and S T Kitai

At least two types of large neurons (somatic cross-sectional areas, SA greater than 300 microns2) and five-types of medium neurons (SA between 100 and 300 microns2) were distinguished in Golgi preparations of the adult rat neostriatum. Type I large cells had aspinous somata with long, radiating, sparsely spined dendrites which were sometimes varicose distally, whereas type II large cells had spines on both somatic and dendritic surfaces. Type I medium cells had aspinous somata and proximal dendrites, but their distal dendrites were densely covered with spines. Type II medium cells had somatic spines, and their radiating dendrites were sparsely spined. Other medium cells had no somatic spines: Type III cells had poorly branched and sparsely spined dendrites. Type IV cells had profusely branched, sparsely spined dendrites. Type V cells had radiating and varicose dendrites which could also be sparsely spined. Several small neurons (SA mostly less than 100 microns2) were also found in the rat neostriatum: Some had aspinous soma with sparsely spined dendrites; others had somatic spines. Except for the type II large cells, intrinsic axon collaterals were observed for every type of neuron, indicating that they all had local integrating functions.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings

Related Publications

H T Chang, and C J Wilson, and S T Kitai
January 1990, Neuroscience,
H T Chang, and C J Wilson, and S T Kitai
June 1985, The Journal of comparative neurology,
H T Chang, and C J Wilson, and S T Kitai
June 1982, Brain research bulletin,
H T Chang, and C J Wilson, and S T Kitai
July 1984, The Journal of comparative neurology,
H T Chang, and C J Wilson, and S T Kitai
April 1983, The Journal of comparative neurology,
H T Chang, and C J Wilson, and S T Kitai
November 1988, Brain research,
Copied contents to your clipboard!