Transport of proteins into chloroplasts. Binding of nuclear-coded chloroplast proteins to the chloroplast envelope. 1982

J Pfisterer, and P Lachmann, and K Kloppstech

A system has been constructed in vitro for the binding of cytoplasmically synthesized chloroplast proteins to the chloroplast envelope which precedes the uptake into the organelle in vivo. Isolated chloroplast envelopes from young pea or spinach are capable of binding the majority of proteins obtained by translation of poly(A)-containing RNA from greening plants in vitro. Among the bound proteins the precursors to the light-harvesting chlorophyll a/b apoprotein and the small subunit of ribulose-1,5-bisphosphate carboxylase are prominent. Binding is an intrinsic property of the envelope membrane and does not require energy in the form of ATP. Bound proteins remain on the surface of the envelope vesicles and can be digested by protease. Binding is complete within minutes, shows a high affinity of the reactants, and is non-ionic in nature. Protein binding is specific for translation products of poly(A)-containing RNA from greening plants. Precursors to chloroplast protein are bound preferentially as compared to the mature proteins. The specificity is further demonstrated by the low binding of proteins obtained by run-off translation of polysomes. Binding of radioactive labeled proteins is subject to competition by excess unlabeled homologous proteins. Once bound, the proteins are withdrawn from competition indicating a high binding stability. All the properties found for binding of proteins to isolated envelopes are consistent with the concept of the so-called envelope carrier hypothesis.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J Pfisterer, and P Lachmann, and K Kloppstech
June 1984, Biochemical Society transactions,
J Pfisterer, and P Lachmann, and K Kloppstech
March 1985, The Journal of biological chemistry,
J Pfisterer, and P Lachmann, and K Kloppstech
May 1988, European journal of biochemistry,
J Pfisterer, and P Lachmann, and K Kloppstech
July 1988, Photosynthesis research,
J Pfisterer, and P Lachmann, and K Kloppstech
January 1986, Annual review of biochemistry,
J Pfisterer, and P Lachmann, and K Kloppstech
December 2023, Plant signaling & behavior,
J Pfisterer, and P Lachmann, and K Kloppstech
January 1989, Cell,
J Pfisterer, and P Lachmann, and K Kloppstech
June 1979, The Journal of cell biology,
J Pfisterer, and P Lachmann, and K Kloppstech
September 1995, The Journal of biological chemistry,
Copied contents to your clipboard!