Nucleotide sequence of the gene encoding the RNA subunit (M1 RNA) of ribonuclease P from Escherichia coli. 1982

R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman

The gene encoding the RNA subunit (M1 RNA) of RNAase P (EC 3.1.26.5) from Escherichia coli has been isolated, and its complete nucleotide sequence, including flanking regions, has been determined. The promoter region, similar to others near genes under stringent control, and the site of transcription termination have been identified. The transcript from the gene (M1 RNA) can be drawn in a secondary structure that has approximately 60% G-C base pairs. One hairpin loop of this hypothetical structure has five contiguous nucleotides complementary to invariant nucleotides in the TpsiCG loop of all E. coli tRNAs. The M1 gene, when subcloned in the plasmid pBR325, can be amplified. It directs production of functional M1 RNA. In an E. coli strain thermosensitive for RNAase P function, the size of the gene transcript is the same as in wild-type E. coli, but less mature M1 RNA is made in the mutant cells.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
December 1984, Biochemistry,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
March 1986, Biochemistry,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
December 1992, Nucleic acids research,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
April 1986, Biochemistry,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
November 1991, Nucleic acids research,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
September 1991, Gene,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
December 1988, Infection and immunity,
R E Reed, and M F Baer, and C Guerrier-Takada, and H Donis-Keller, and S Altman
December 1984, Gene,
Copied contents to your clipboard!