Streptococcus mutans genes that code for extracellular proteins in Escherichia coli K-12. 1982

R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss

Chromosomal DNA from Streptococcus mutans 6715 (serotype g) was cloned into Escherichia coli K-12 by using the cosmid pJC74 cloning vector and a bacteriophage lambda in vitro packaging system. Rabbit antiserum against S. mutans extracellular proteins was used for immunological screening of the clone bank. Twenty-one clones produced weak to strong precipitin bands around the colonies, but only after the lambda c1857 prophage was induced by being heated to lyse the E. coli cells. None of the clones expressed enzyme activity for several known S. mutans extracellular enzymes. One of these clones contained a 45-kilobase recombinant plasmid designated pYA721. An 8.5-kilobase fragment of S. mutans DNA from pYA721 was isolated and recloned into the BamHI restriction site of the plasmid vector pACYC184 to construct pYA726. pYA726 contained all, or nearly all, of the gene for a surface protein antigen (the spaA protein) of S. mutans 6715. This was deduced from immunological studies in which extracts of cells harboring pYA726 reacted with antisera against both purified 6715 spaA protein (about 210,000 daltons) and the immunologically similar antigen I/II of serotype c strains of S. mutans. In addition, the S. mutans spaA protein was found to possess at least one antigenic determinant not present on the protein specified by pYA726. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of E. coli clone extracts revealed that pYA726 produced a polypeptide with a molecular mass of about 180,000 daltons which was predominantly found in the periplasmic space of E. coli cells. Antisera to the spaA protein of S. mutans reacted with extracellular protein from representative strains of S. mutans serotypes a, c, d, e, f, and g, but not b.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
January 1998, Nucleic acids research,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
August 1985, Infection and immunity,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
January 1997, Nucleic acids research,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
February 1983, Journal of bacteriology,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
June 1983, Annals of the New York Academy of Sciences,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
December 1998, FEMS microbiology letters,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
October 2015, Journal of bacteriology,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
October 2010, Mutation research,
R G Holt, and Y Abiko, and S Saito, and M Smorawinska, and J B Hansen, and R Curtiss
December 1986, Journal of bacteriology,
Copied contents to your clipboard!