In the paper results are presented of investigation of protochlorophyll (PChl) and chlorophyll (Chl) mixed associations and of interaction between them within the polymer molecular complex, which forms in mixture of water-dioxane (1 : 4). The initial PChl concentration in all solutions was constant (CPChl = 1 . 10(-5) m/l), and Chl concentration varied from 1.10(-8) m/l up to 2.10(-5) m/l. It is shown that with the rise of Chl proportion in the mixed aggregate the rearrangement of both donor (PChl) and acceptor (Chl) components of complex takes place. The luminescence quenching of PChl and the sensitization of Chl emission in mixed pigment associates were investigated of different Chl levels and the evaluation of efficiency of intracomplex electronic excitation energy transfer, determined from quenching and sensibilization, was performed. Similar dependence of energy transfer effectiveness on Chl concentration, determined by the two above-mentioned methods shows that the excitation migration in an associate takes place without losses. An analysis of results permits to conclude that a small trapping efficiency of PChl excitation by the acceptor part of the complex may be connected with the existence of the prerelaxation reverse energy transfer from Chl to PChl in mixed pigment associates. On the basis of the obtained data a mechanism of energy transfer from protochlorophyllide to chlorophyllide in etiolated leaves and homogenates is discussed.