Type II cochlear ganglion cells in the chinchilla. 1982

M A Ruggero, and P A Santi, and N C Rich

In order to ascertain whether Type II cochlear ganglion cells project to the brain, we have studied the retrograde transport of horseradish peroxidase (HRP) from the cochlear nucleus to the spiral ganglion of the chinchilla. In this animal there exist two types of ganglion neurons, which closely correspond to those previously described in guinea pigs, cats and rats. As in the guinea pig, the majority population (Type I) consists of relatively large, myelinated neurons. The minority population (Type II, 10% of the total population) consists of small, mostly unmyelinated cells, with filamentous cytoplasm and finely grained nuclear chromatin. Type II neurons tend to be clustered toward the peripheral side of Rosenthal's canal, often in close proximity to the intraganglionic spiral bundle. By 24 h after injections of HRP into the cochlear nucleus, incubation of the cochlear ganglion in diaminobenzidine/H2O2 reveals abundant HRP label in both Type I and Type II neurons. Type II neurons, however, tend to be labelled less intensely than Type I neurons. Control experiments, consisting of spillage of HRP solution over the cochlear nucleus, were carried out to determine how much HRP might be picked up by neurons after HRP diffusion. Comparison of cochleae from injected animals and from the control animals suggests that most of the label that was found in ganglion neurons after cochlear nucleus injections represents axonally transported HRP. We conclude, at least tentatively, that Type II neurons project to the brain. The fact that less label is found in Type II neurons that in Type I neurons suggests that the former have thinner axons and/or finer terminals in the cochlear nucleus.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002682 Chinchilla A genus of the family Chinchillidae which consists of three species: C. brevicaudata, C. lanigera, and C. villidera. They are used extensively in biomedical research. Chinchillas
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D013136 Spiral Ganglion The sensory ganglion of the COCHLEAR NERVE. The cells of the spiral ganglion send fibers peripherally to the cochlear hair cells and centrally to the COCHLEAR NUCLEI of the BRAIN STEM. Ganglion of Corti,Auditory Ganglion,Spiral Ganglia,Auditory Ganglions,Ganglia, Spiral,Ganglion, Auditory,Ganglion, Spiral,Ganglions, Auditory

Related Publications

M A Ruggero, and P A Santi, and N C Rich
May 1994, Hearing research,
M A Ruggero, and P A Santi, and N C Rich
October 1983, Hearing research,
M A Ruggero, and P A Santi, and N C Rich
October 1990, The Journal of comparative neurology,
M A Ruggero, and P A Santi, and N C Rich
January 1991, Acta oto-laryngologica. Supplementum,
M A Ruggero, and P A Santi, and N C Rich
January 2013, Polish journal of veterinary sciences,
M A Ruggero, and P A Santi, and N C Rich
January 2023, Folia histochemica et cytobiologica,
M A Ruggero, and P A Santi, and N C Rich
June 2015, Neuroscience,
Copied contents to your clipboard!