Interaction of the mouse and bovine myelin basic proteins and two cleavage fragments with anionic detergents. 1983

P F Burns, and A T Campagnoni

The binding of deoxycholate and dodecyl sulfate to the mouse and bovine myelin basic proteins and two peptide fragments, obtained by cleavage of the bovine basic protein at its single tryptophan residue, was examined. Complete equilibrium binding isotherms for both detergents were obtained by examining their binding to each of the polypeptides immobilized on agarose. The bulk of the binding of dodecyl sulfate was found to be highly cooperative, and at saturation all four polypeptides bound far more detergent than globular, water-soluble proteins. The sum of the dodecyl sulfate bound by each of the two bovine basic protein cleavage fragments was almost twice that bound by the intact protein at saturation, suggesting that cleavage of the bovine basic protein exposes sites for additional binding of dodecyl sulfate. At pH values below pH 8.0, an additional cooperative transition was observed below the critical micelle concentration of sodium dodecyl sulfate in the binding isotherms of all four polypeptides. The midpoint of this transition corresponded to an apparent pK of approximately 5.5; however, the destruction of 90% of the histidine residues in the bovine basic protein had no effect on this transition. At pH 9.2 and moderate ionic strength (I = 0.1), the bulk of the binding of deoxycholate to the mouse and bovine basic proteins occurred at and above the critical micelle concentration of the detergent; and saturation values of deoxycholate binding to these two proteins were considerably higher than that reported for globular, water-soluble proteins. In marked contrast to the results with dodecyl sulfate, neither cleavage fragment was observed to bind deoxycholate. The results suggest that the higher ordered structure of the bovine basic protein may play an important role in the binding of anionic amphiphiles to the protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P F Burns, and A T Campagnoni
August 1998, Journal of colloid and interface science,
P F Burns, and A T Campagnoni
December 2002, Journal of colloid and interface science,
P F Burns, and A T Campagnoni
February 1978, The Biochemical journal,
P F Burns, and A T Campagnoni
December 1971, Journal of neurochemistry,
P F Burns, and A T Campagnoni
January 1973, Biophysik,
P F Burns, and A T Campagnoni
February 1975, Biochimica et biophysica acta,
P F Burns, and A T Campagnoni
September 1981, Life sciences,
Copied contents to your clipboard!