Immune lysis of reconstituted myelin basic protein--lipid vesicles and myelin vesicles. 1983

J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day

Complement-mediated lysis of reconstituted lipid-myelin basic protein (BP) vesicles and myelin vesicles due to antibody raised against BP and isolated myelin is measured by determination of the amount of a water-soluble spin label, tempocholine chloride, released from the vesicles. The response is shown to be antigen-specific, antibody-dependent, and complement mediated. The relative response to different anti-BP antibody samples is similar to that determined by radioimmunoassay procedures. In contrast to immunoassays with BP in aqueous solution, this method measures immune recognition of the protein in either a synthetic or a natural membranous environment. This is important because this protein has been shown to have a different conformation when bound to lipid bilayers than in aqueous solution and its conformation depends on lipid composition. It is also a more rapid method because no separation of spin label still trapped in the vesicles and that released due to immune lysis is required. In synthetic membranes consisting of sphingomyelin, cholesterol, and an acidic lipid, either phosphatidylglycerol, phosphatidic acid, or phosphatidylserine, the response was greatest when the acidic lipid was phosphatidic acid. The response did not depend significantly on the antigen concentration expressed as molar ratio of BP to sphingomyelin, over the range 0.15:600 to 2:600, although it decreased at molar ratios less than 0.15:600. The antigen density required for immune lysis of vesicles containing this protein antigen is similar to that reported elsewhere for lipid antigens, although the time required for maximal lysis was greater. Both anti-BP and anti-myelin antibodies caused a greater specific complement-mediated response with synthetic vesicles than with myelin vesicles, which may be due to the different lipid and/or protein composition of myelin. Response was also obtained with the myelin vesicles, however, indicating that some determinants of BP can be recognized on the surface of the bilayer in isolated myelin by anti-BP.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein

Related Publications

J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
October 1995, Biochemistry,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
October 1974, The Biochemical journal,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
September 1985, Journal of neurochemistry,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
October 2023, Biochimica et biophysica acta. Biomembranes,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
December 1976, Biochimica et biophysica acta,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
January 2000, Biochimica et biophysica acta,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
August 1999, Journal of neuroscience research,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
April 1997, Biochemistry,
J M Boggs, and N Samji, and M A Moscarello, and G A Hashim, and E D Day
August 1987, Bollettino della Societa italiana di biologia sperimentale,
Copied contents to your clipboard!