Functional and morphological characterization of isolated bovine adrenal medullary cells. 1978

E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett

Single bovine adrenal medullary cells have been obtained by retrograde perfusion of adrenal medullae with a solution of 0.05% collagenase in Ca++-free Krebs Henseleit buffer. Chromaffin cells were obtained in high yield (5 X 10(6) cells/g medulla), and more than 95% of these were viable as shown by exclusion of trypan blue. The isolated cells were capable of respiring at a linear rate for a minimum of 120 min. Ultrastructural examination revealed that the cells were morphologically intact, and two distinct types of adrenal medullary cells were identified, on the basis of the morphology of their electron-dense vesicles, as (a) adrenaline-containing and (b) noradrenaline-containing cells. Biochemical analysis showed that the cells contained catecholamines and dopamine-beta-hydroxylase (DBH). The cells released catecholamines and DBH in response to acetylcholine (ACh), and this release was accompanied by changes in the vesicular and surface membranes observed at the ultrastructural level. The time-course of ACh-stimulated catecholamine and DBH release, and the dependence of this release on the concentration of ACh and extracellular Ca++ have been investigated. The isolated cells were pharmacologically sensitive to the action of the cholinergic blocking agents, atropine and hexamethonium.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
May 2000, Biochemical pharmacology,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
June 1985, The Tokushima journal of experimental medicine,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
January 1983, Quarterly journal of experimental physiology (Cambridge, England),
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
January 1980, Neuroscience,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
January 1988, Biochemical and biophysical research communications,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
May 1983, Molecular pharmacology,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
September 1985, FEBS letters,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
March 1977, Cell and tissue research,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
May 1992, Journal of neurochemistry,
E M Fenwick, and P B Fajdiga, and N B Howe, and B G Livett
August 1983, Neuroscience letters,
Copied contents to your clipboard!