Structure and paramyosin content of tarantula thick filaments. 1983

R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King

Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical diffraction and filtering and found it to be similar to that previously described for the thick filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are disposed in a four-stranded right-handed helical arrangement, with 14.5-nm axial spacing between successive levels of four bridges, and a helical repeat period every 43.5 nm. The orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar to that on Limulus filaments as suggested by the similarity between filtered images of the two types of filaments and the radial distance of the centers of mass of the cross-bridges from the surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than Limulus filaments, contain less paramyosin, and display structure that probably reflects the organization of the filament backbone which is not as apparent in images of Limulus filaments. We suggest that the similarities between Limulus and tarantula thick filaments may be governed, in part, by the close evolutionary relationship of the two species.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013112 Spiders Arthropods of the class ARACHNIDA, order Araneae. Except for mites and ticks, spiders constitute the largest order of arachnids, with approximately 37,000 species having been described. The majority of spiders are harmless, although some species can be regarded as moderately harmful since their bites can lead to quite severe local symptoms. (From Barnes, Invertebrate Zoology, 5th ed, p508; Smith, Insects and Other Arthropods of Medical Importance, 1973, pp424-430) Spider
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D055095 Optics and Photonics A specialized field of physics and engineering involved in studying the behavior and properties of light and the technology of analyzing, generating, transmitting, and manipulating ELECTROMAGNETIC RADIATION in the visible, infrared, and ultraviolet range. Photonics,Photonics and Optics

Related Publications

R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
March 1981, Journal of muscle research and cell motility,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
June 1976, Journal of ultrastructure research,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
January 1982, Society of General Physiologists series,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
August 1996, Tissue & cell,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
November 1975, Journal of molecular biology,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
July 1984, Journal of molecular biology,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
March 1971, Journal of molecular biology,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
November 2013, Biophysical journal,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
February 1994, Tissue & cell,
R J Levine, and R W Kensler, and M C Reedy, and W Hofmann, and H A King
August 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!