Complex effects of inhibitors on cyclic GMP-stimulated cyclic nucleotide phosphodiesterase. 1983

T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka

We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010208 Papaverine An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels. Cerespan,Papaverine Hydrochloride,Pavabid,Pavatym,Hydrochloride, Papaverine
D011804 Quinolines
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012368 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone Inhibitor of phosphodiesterases. Ro 1724,Ro 20 1724,Ro 20-1724,Ro 201724
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo

Related Publications

T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
November 1990, Biochemistry,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
February 1982, The Journal of biological chemistry,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
October 1987, The Journal of biological chemistry,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
December 1975, Biochimica et biophysica acta,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
July 1990, Thrombosis research,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
September 1991, The Journal of biological chemistry,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
January 1979, Biochemical pharmacology,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
January 1985, Journal of cyclic nucleotide and protein phosphorylation research,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
December 1978, Journal of cyclic nucleotide research,
T Yamamoto, and S Yamamoto, and J C Osborne, and V C Manganiello, and M Vaughan, and H Hidaka
December 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!