Onc genes and other new targets for cancer chemotherapy. 1984

H Busch

Recent advances in molecular biology have raised the hope that understanding of human cancer might progress rapidly and that improvements in therapy might result (Bishop 1983a, b; Busch 1962; Busch 1976; Duesberg 1983). With the development of gene cloning, DNA sequence analysis and improved hybridization methods, it became possible to evaluate whether cancer results from alteration in gene dosage, point or multiple mutation of genes, translocations, deletions, insertions, inversions, cis or trans altered promoters, amplification, and a variety of other genetic factors, including enhancer elements that alter rates of readouts of particular mRNA species. "Onc genes" are under intensive study because they offer manageable probes for evaluation of these various possibilities and also because the study of their cellular analogs may further understanding of the molecular biology of normal fetal and malignant cells. Despite the excessive enthusiasm of some proponents of this field and the negativism of its critics (Bishop 1983 a, b; Duesberg 1983), it is clear that analytical tools and new information will be of value in further studies on experimental cancer, regardless of whether cellular oncogenes (c-onc genes) have anything to do with human cancer or not. In the meantime, studies on enzymes, proteins and epitopes involved in growth processes, have opened new avenues for inhibition of human cancer by quantitative reduction of biosynthetic reactions.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D009858 Oncogenic Viruses Viruses that produce tumors. Tumor Viruses,Oncogenic Virus,Tumor Virus,Virus, Oncogenic,Virus, Tumor,Viruses, Oncogenic,Viruses, Tumor
D012107 Research Design A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly. Experimental Design,Data Adjustment,Data Reporting,Design, Experimental,Designs, Experimental,Error Sources,Experimental Designs,Matched Groups,Methodology, Research,Problem Formulation,Research Methodology,Research Proposal,Research Strategy,Research Technics,Research Techniques,Scoring Methods,Adjustment, Data,Adjustments, Data,Data Adjustments,Design, Research,Designs, Research,Error Source,Formulation, Problem,Formulations, Problem,Group, Matched,Groups, Matched,Matched Group,Method, Scoring,Methods, Scoring,Problem Formulations,Proposal, Research,Proposals, Research,Reporting, Data,Research Designs,Research Proposals,Research Strategies,Research Technic,Research Technique,Scoring Method,Source, Error,Sources, Error,Strategies, Research,Strategy, Research,Technic, Research,Technics, Research,Technique, Research,Techniques, Research
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Busch
January 2002, Cancer chemotherapy and biological response modifiers,
H Busch
January 2001, Cancer chemotherapy and biological response modifiers,
H Busch
January 1985, Haematology and blood transfusion,
H Busch
February 1999, Internal medicine (Tokyo, Japan),
H Busch
June 2003, Hematology (Amsterdam, Netherlands),
H Busch
May 1982, Science (New York, N.Y.),
H Busch
January 1986, Princess Takamatsu symposia,
H Busch
July 2015, Journal of AHIMA,
H Busch
May 1985, Science (New York, N.Y.),
H Busch
December 1992, Seminars in cancer biology,
Copied contents to your clipboard!