In vitro metabolism of 4-chlorobiphenyl by control and induced rat liver microsomes. 1978

C Wyndham, and S Safe

The in vitro metabolism, mechanism of metabolism, and macromolecular binding of a monochlorobiphenyl component of commercial polychlorinated biphenyls (PCB) have been investigated. 4-Chlorobiphenyl was metabolized by rat liver microsomes in the presence of NADPH to yield a major metabolite, 4'-chloro-4-biphenylol, and a number of minor metabolites. The metabolism of deuterium-labeled 4-chlorobiphenyl proceeded with the NIH shift of the isotope and no observed isotope effect thus indicating the intermediacy of an arene oxide. Noninduced rat liver microsomes mediated the covalent binding between the 4-chlorobiphenyl and 4'-chloro-4-biphenylol substrates and endogenous microsomal protein. Prior in vivo administration of a commericial PCB preparation, Aroclor 1248 (Monsanto Chemical Co., containing 48 percent by weight of chlorine), resulted in an induced microsomal preparation which significantly increased the substrate-protein binding. The effect of various inhibitors on protein binding was investigated. Aroclor 1248 induced microsomes mediated binding of 4-chlorobiphenyl to endogenous and exogenous nucleic acids, indicating a possible mechanism for the previously reported mutagenic action of this chlorobiphenyl. The spectral properties of Aroclor 1248 induced cytochrome P-450 were investigated and compared with the pentobarbital-induced cytochrome fraction.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001140 Aroclors Industrial chemicals which have become widespread environmental pollutants. Each aroclor is a mixture of chlorinated biphenyls (1200 series) or chlorinated terphenyls (5400 series) or a combination of both (4400 series). Aroclor

Related Publications

C Wyndham, and S Safe
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
C Wyndham, and S Safe
November 1984, Biochemical pharmacology,
C Wyndham, and S Safe
January 1984, Drug metabolism and disposition: the biological fate of chemicals,
C Wyndham, and S Safe
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
C Wyndham, and S Safe
February 1971, Canadian journal of biochemistry,
C Wyndham, and S Safe
January 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
C Wyndham, and S Safe
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
C Wyndham, and S Safe
December 2007, Drug metabolism and disposition: the biological fate of chemicals,
C Wyndham, and S Safe
January 1975, Archives of environmental contamination and toxicology,
C Wyndham, and S Safe
July 2014, Journal of pharmaceutical and biomedical analysis,
Copied contents to your clipboard!