The development of axonal connections in the central olfactory system of rats. 1984

J E Schwob, and J L Price

The development of the cytoarchitecture and axonal connections of the central olfactory system were studied in fetal and neonatal rats from E16. In contrast to neocortical development, the olfactory cortex lacks a distinct cortical plate. In the piriform cortex and the olfactory tubercle the cellular laminae emerge simultaneously, while in the anterior olfactory nucleus, there are morphogenetic gradients from superficial to deep as well as from caudal to rostral which parallel the known cytogenetic gradients. Parallel morphogenetic and cytogenetic gradients are also present in the lateral to medial axis of the olfactory tubercle. The projection from the olfactory bulb and the associational projections from the piriform cortex begin to develop well before birth. At E17 fibers from the bulb are limited to the lateral olfactory tract (LOT) and the molecular layer just deep to it, and then spread out caudally, laterally, and medially away from the LOT. This sequence of innervation parallels and predicts the density of innervation in the adult: those areas which are innervated first (such as the piriform cortex deep to the LOT) ultimately receive the heaviest innervation; conversely, those areas which are innervated very late (such as the medial olfactory tubercle) receive the lightest projection. The intracortical projections from the anterior and posterior piriform cortex extend into layer I ipsilaterally by E20 and obtain their adult distribution by the middle of the first postnatal week. On the other hand, fibers from the anterior olfactory nucleus and the entorhinal area do not reach their full adult extent until the second postnatal week. Similarly, the crossed projection of the anterior piriform cortex to the contralateral posterior piriform cortex does not grow into layer I until this later time. The timing of fiber ingrowth showed no relation to the trajectory or eventual areal or laminar termination of fibers. As with the olfactory bulb projection, the timing may influence the density of termination. Centrifugal fibers to the bulb are demonstrable around the time of birth both by the retrograde transport of horseradish peroxidase (HRP) and by the anterograde transport of 3H-leucine. The arrival of additional fibers during the remainder of the first postnatal week parallels the known cytogenetic and morphogenetic gradients in the areas in which they arise. The projections of the olfactory cortex to the lateral hypothalamic area and the mediodorsal thalamic nucleus are evident before birth. This correlates with the early generation of the cells which give rise to these projections.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

J E Schwob, and J L Price
January 1977, Neuroscience,
J E Schwob, and J L Price
January 1971, Acta biologica Academiae Scientiarum Hungaricae,
J E Schwob, and J L Price
January 2002, Journal of biomedicine & biotechnology,
J E Schwob, and J L Price
August 1994, The Journal of comparative neurology,
J E Schwob, and J L Price
January 2006, Annual review of cell and developmental biology,
J E Schwob, and J L Price
November 1975, Experimental brain research,
J E Schwob, and J L Price
January 1984, Cell and tissue research,
J E Schwob, and J L Price
January 2002, Cells, tissues, organs,
Copied contents to your clipboard!